Геометрия
Треугольники
План урока:
Как выглядит треугольник?
В выходной день Глеб с родителями ехали в парк. Мальчик заметил, что вдоль дороги стояла непонятная табличка, увидев которую, отец поехал очень медленно.
«Что это такое?» – поинтересовался ребенок. Папа рассказал, что это дорожный знак, который предупреждает о трудностях на пути. Глебу очень понравился знак, а особенно его форма. Отец продолжил рассказ о знаках: «Форма знака о многом говорит водителю, ведь при плохой видимости автолюбитель видит только форму, а не надпись. Поэтому все предупреждающие знаки – треугольные». «А что такое треугольные?» – не унимался мальчик. Найти ответ на этот и многие другие вопросы папе помог наш сегодняшний урок.
Вначале, давайте разберемся, что же такое треугольник и из чего он состоит.
В повседневной жизни нас окружает масса предметов имеющих треугольную форму. Например:
Часы, воздушный змей, кусочек торта, пиццы, арбуза, салатники, рамки для фотографий, пузырек парфюма – этот список можно продолжать бесконечно. Но что же такое треугольник?
Приведем примеры треугольников:
Исходя из определения, каждый рисунок состоит из трех отрезков. В геометрии такие отрезки называют сторонами треугольника.
Кроме отрезков, составляющей частью фигуры являются три точки, которые принято называть вершинами.
В геометрии, вершины треугольника принято обозначать заглавными буквами латиницы: A,C,D,B.
Начертим треугольник. Вершины, обозначим буквами A,C,D.
Данная геометрическая фигура имеет три вершины A,C,D и три стороны АС, CD, DА.
А как же на письме показать, что данная фигура является треугольником?
Очень интересным является то, что записывать название, можно перечисляя вершины в любом порядке.
Например:
Можно записать: ∆NOK, ∆OKN, ∆KNО. Каждый вариант записи обозначает один и тот же треугольник и является верным.
Само название фигуры «Треугольник» предполагает, что в состав должны входить три угла. Так ли это?
Внимательно рассмотрим рисунок:
Действительно, мы видим три угла, которые отмечены дугами: ∠RFP,∠FPR, ∠PRF(мы уже знаем, что буква, обозначающая вершину угла всегда записывается в середине) или∠F, ∠P,∠R.
Виды треугольников
Все геометрические фигуры, имеющие треугольную форму,делятся на группы по двум направлениям:
- По углам.
- По сторонам.
Давайте рассмотрим, на какие группы делятся треугольники по углам:
Теперь, познакомимся с группами треугольников по сторонам(на рисунках равные стороны принято обозначать одинаковым количеством черточек):
Постарайтесь запомнить все виды треугольников, так как на протяжении всего учебного процесса, вам часто придется сталкиваться с выполнением заданий на данную тему.
Равенство треугольников
Случаются ситуации, когда точно известно, что два треугольника равны, а что же в таком случае можно сказать про углы и стороны таких треугольников?
Нам дано: ∆ABC = ∆A1B1C1. Равны ли соответствующие стороны и углы данных фигур?
По условию треугольники равны. Значит, применяем рассмотренное правило, которое говорит о том, что все соответствующие элементы фигуры равны между собой.
Получается:
Если ∆ABC = ∆A1B1C1, то равны соответствующие стороны:
АС =А1С1;
АВ = А1В1;
СВ = С1В1;
и соответствующие углы равны:
∠С =∠С1;
∠А = ∠А1;
∠В = ∠В1.
Геометрия интересна тем, что большинство её правил нуждаются в доказательствах. Такие правила называют теоремами.
Вместе с этим, имеются и самостоятельные правила, которые называют аксиомами геометрии.
Сегодня мы рассмотрим первую теорему с названием «Первый признак равенства треугольников», и проведем работу по сбору доказательств для данной теоремы.
Два треугольника – ∆OMN и ∆KLT. Известно, что две стороны треугольников и угол между ними равны.
Значит:
OM=KL,
MN=LT;
∠M =∠L.
Докажем, что ∆OMN=∆KLT.
Доказательство первого признака равенства треугольников:
Из условия нам известно, что соответствующие углы равны ∠M =∠L, следовательно, мы можем выполнить наложение двух треугольников так, чтобы вершина M совпадала с вершиной L.
Тогда, сторона OM наложится на сторону KL, а сторона MN на отрезок LT. По условию нам известно, что отрезки равны OM=KL, MN=LT, значит, при наложении они совпадут. Получается, что при наложении совпадает угол, и две стороны, следовательно, будут совпадать и оставшиеся стороны ON и KT, то есть ON = KT . Если при наложении совмещаются три стороны и одна вершина, значит, совместятся и две другие вершины KO и TN.
Выходит, что при совмещении совпадают все элементы ∆, а такие ∆ называются равными.
Мы доказали, что ∆OMN=∆KLT.
Еще, нам предстоит познакомиться с несколькими понятиями, без которых продолжать изучение геометрии невозможно.
Начертим прямую АВ. Выберем точку не лежащую на данной прямой. Проведем отрезок СК, соединяющий точку С и прямую АВ, таким образом, чтобы при пересечении СК и АВ образовывался прямой угол (90˚) . Изображенный отрезок СК называют перпендикуляром к прямой.
Доказательство будем проводить в два этапа.
1 этап
2 этап
Теорема доказана.
Медиана, биссектриса, высота
Рассмотрим ∆АВС. Отметим на отрезке АС середину и обозначим её точкой О. Соединим точки В и О отрезком. Полученный отрезок ВО называют медианой.
Любой треугольная фигура имеет три вершины, из каждой можно провести медиану, следовательно, в одной можно провести три медианы.
Биссектриса
Чтобы рассмотреть понятие биссектрисы треугольника, вспомним определение биссектрисы угла:
На рисунке изображен ∆ОВМ. Из угла О проведем биссектрису (луч, делящий угол пополам)и продолжим её до пересечения со стороной ВМ. Место пересечения отметим точкой С. Отрезок ОС делит угол О пополам(∠ВОС =∠СОМ) и пересекается с противолежащей стороной ВМ.
На рисунке изображена фигура РТК. Из вершины Т проведем перпендикуляр к стороне РК, место пересечения перпендикуляра и стороны фигуры отметим точкой А.∠ТАК =∠ТАР=90˚. Перпендикуляр ТА называют высотой ∆РТК.
Изученные сегодня определения и теоремы являются базовыми в изучении геометрии. Поэтому постарайтесь уделить особое внимание материалу сегодняшнего урока.
Минутка истории:
- Ученые установили, что первые упоминания о треугольниках появились еще четыре тысячи лет назад и были отображены на египетских папирусах. Две тысячи лет назад изучение данной геометрической фигуры приняло большие масштабы.
- Жители Китая уверенны, что именно треугольник является шаблоном для всех существующих фигур, которые представляют собой видоизмененные треугольники.
- Самый популярный треугольник в мире – Бермудский. Его название появилось в пятидесятых годах из-за расположения материковых вершин (Бермуды, Флорида, Пуэрто-Рико) и аномальных явлений между ними.
ВОПРОСЫ И ЗАДАНИЯ
Теорема – это…
1) утверждение, требующее доказательств; 2) утверждение, не требующее доказательств 3) обычное правило
Как называется данная теорема «Если две стороны и угол между ними соответственно равны у двух треугольников, то такие треугольники считают равными»?
1) равенство треугольников 2) первый признак равенства треугольников 3) второй признак равенства треугольников
Отрезок, проведенный из точки не лежащей на прямой к данной прямой под углом 90˚ называется:
1) параллельный отрезок 2) сторона 3) перпендикуляр
Продолжите фразу «Медиана треугольника соединяет вершину треугольника с …»:
1) другой вершиной треугольника 2) серединой противолежащей стороны 3) противолежащей стороной
Перпендикуляр, проведенный из вершины треугольника к противолежащей стороне треугольника, называют:
1) биссектриса треугольника 2) медиана треугольника 3) высота треугольника