Алгебра

Урок 9: Обратные функции

Обратные функции и корни n-ой степени

Математики любят для любых действий придумывать обратные им операции (для сложения – вычитание, для умножения – деление). В связи с этим важно разобраться с особенностями обратных функций. Эти знания помогут лучше понять операцию извлечения корня n-ой степени, которая обратна возведению в степень.
 

План урока:

Взаимно обратные функции

Кубический корень

Корни n-ой степени

Арифметические корни n-ой степени

Свойства корня n-ой степени

Сравнение корней

 

Взаимно обратные функции

Напомним, что любая функция у = у(х) представляет собой некоторое правило, которое устанавливает соответствие между значениями х и значениями у. В частности, функция у = х2 ставит в соответствие каждому действительному числу его квадрат. Приведем таблицу, содержащую значения этой функции для целых аргументов от – 2 до 2:

1hghjg

Но если есть соответствие между х и у, то должно существовать и обратное соответствие между у и х. Действительно, строки таблички можно «перевернуть» и она примет следующий вид:

2gghfj

Мы получили два взаимно обратных соответствия. Однако второе из них функцией не является, ведь функция должна ставить в соответствие своему аргументу только одно значение функции. Однако, судя по второй таблице, числу у = 1 соответствует сразу два х: х = – 1 и х = 1. В таком случае математики говорят, что исходная функция у = х2 является необратимой.

Теперь изучим зависимость у = х3. Построим табличку и для неё:

3gfdg

Теперь «перевернем таблицу» и получим следующее:

4ghgfhj

Мы видим, что как каждому значению х соответствует единственное значение у, так и наоборот, каждому у соответствует единственное значение х. В математике для подобных соответствий используют понятие взаимно-однозначное соответствие.

5gfh

Для лучшего понимания этого определения отвлечемся от чисел. Пусть в футбольном чемпионате играет несколько команд. Они образуют множество Х команд-участниц соревнования. За множество У примем отдельных футболистов, выступающих на турнире. Каждому игроку соответствует единственная команда, за которую он выступает, но обратное неверно – каждой команде соответствует несколько игроков. Значит, это пример соответствия, не являющегося взаимно-однозначным.

Пусть тренеры команд образуют множество Z. Каждый тренер тренирует лишь одну команду, и наоборот, каждую команду тренирует единственный тренер. Значит, между множествами X и Z есть взаимно-однозначное соответствие.

Вернемся к функциям. Если соответствие, которое задает функция у = у(х), является взаимно-однозначным, то каждому значению у будет соответствовать единственное значение х. Значит, существует некоторая функция х = х(у). Пары функций у = у(х) и х = х(у) называются взаимно обратными функциями.

Ещё раз скажем, что не для любой функции существует обратная функция, ведь не все они определяют взаимно-однозначное соответствие. Если всё же для у = у(х) есть обратная функция х = х(у), то у = у(х) называют обратимой функцией.

6hgfhf

Покажем, какие функции являются обратными, на примере пары у = 4х + 12 и у = 0,25х – 3. Возьмем, например, значение х = 5 и подставим его в у = 4х + 12:

у = 4х + 12 = 4•5 + 12 = 32

Получили 32. Подставим это число в обратную функцию:

у = 0,25х – 3 = 0,25•32 – 3 = 8 – 3 = 5

Получили именно то число, которое первоначально подставили в первую функцию! Возьмем другое произвольное число, например, 10, и подставим его в у = 4х + 12:

у = 4•10 + 12 = 40 + 12 = 52

Полученный результат подставляем в у = 0,25х – 3:

у = 0,25•52 – 3 = 13 – 3 = 10

Снова получили исходное число! Выберете сами ещё несколько произвольных чисел и убедитесь, что и с ними будет происходить то же самое.

Посмотрим, как получить обратную функцию. Пусть дана зависимость

у = 5х + 20

Это, по сути, выражение для вычисления у. Выразим из него х:

у = 5х + 20

у – 20 = 5х

(у – 20)/5 = х

х = у/5 – 20/5

х = 0,2у – 4

Получили зависимость х от у. Чтобы мы получили из нее обратную функцию, необходимо просто поменять местами буквы х и у:

у = 0,2х – 4

Убедитесь самостоятельно на нескольких примерах, что полученная функция обратна функции у = 5х + 20.

 

Пример. Найдите функцию, обратную зависимости у = 1/(х + 7).

Решение. Умножим обе части равенства у = 1/(х + 7) на (х + 7):

у(х + 7) = 1

Далее поделим обе части нау:

х + 7 = 1/у

Перенесем семерку вправо и получим формулу для вычисления х:

х = 1/у – 7

Для получения обратной функции просто меняем х и у местами:

у = 1/х – 7

Ответ: у = 1/х – 7.

 

Предположим, у нас есть у= у(х), чей график нам известен, и необходимо построить график взаимно обратной функции. Как это сделать? Если одна точка на координатной прямой имеет координаты (a; b) и принадлежит функции у = у(х), то, обратной функции должна принадлежать точка (b; a):

7hgfgh

Эти точки симметричны относительно прямой у = х:

8hgfgh

Поэтому для построения графика обратной функции достаточно симметрично отобразить его относительно прямой у = х.

9hghj

С помощью этого правила построим график функции, обратной у = х3:

10hgfgh

Практика показывает, что не все школьники (да и взрослые тоже) понимают, что означает симметричность относительно прямой у = х, ведь эта прямая наклонена. Здесь требуется довольно высокий уровень пространственного мышления. Куда проще понять симметрию относительно вертикальной или горизонтальной линии. Поэтому мы покажем ещё один способ построения обратных функций, который состоит из двух этапов.

Он заключается в том, что сначала график отображают симметрично относительно вертикальной оси Оу:

11gfdg

На втором этапе полученное отображение поворачивают по часовой стрелке относительно начала координат:

12gfdgh

Заметим важное правило. При построении обратной функции области определения и области значений меняются местами. Действительно, если какое-то число входит в область значения функции, то это значит, что его можно подставить в обратную функцию. Но это в свою очередь означает, что она входит в область определения обратной функции. Проиллюстрируем это правило картинкой:

13gfgd14gdfg

До сих пор мы рассматривали способы построения обратных функций, но ведь в самом начале урока говорилось о том, что обратная функция существует не всегда. Действительно, попытаемся построить обратную функцию для у = х2:

15gfdfg

Получилась та же парабола, но «лежащая на боку». Является ли она графиком функции? Нет. На рисунке проведена вертикальная линия, которая пересевает график в двух точках. Это значит, что одному значению х (в данном случае х = 5) соответствует сразу два значения у. Но подобное соответствие не является функцией. Это значит, что у = х2 – необратимая функция.

Есть ли какой-то признак, позволяющий быстро сказать, является ли функция обратимой? Оказывается, есть. Если функция строго монотонна (то есть либо только возрастает, либо только убывает), то это гарантирует, что она ещё и обратима. Покажем это с помощью рисунков. Известно, что каждому значению строго монотонной функции соответствует лишь один аргумент. С точки зрения геометрии это означает, что любая горизонтальная линия пересекает монотонную функцию не более чем в одной точке:

16gfd

К слову, это свойство мы использовали для решения некоторых уравнений. Теперь отобразим график симметрично прямой у = х, причем также отобразим и горизонтальные линии:

17bghf

Горизонтальные линии превратились в вертикальные, при этом они всё также пересекают график не более чем в одной точке. Но это как раз и означает, что график задает функцию, а не какое-то другое соответствие. Отсюда делаем вывод – любая строго монотонная функция обратима.

18gfdgh

Снова вернемся к функции у = х2. Мы уже показали, что она необратима. Но теперь наложим на нее дополнительное ограничение: х⩾0. Тогда от графика параболы останется только одна ветвь. Для нее уже можно построить обратную функцию:

19gfdfg

Можно сделать вывод – обратимость функции зависит не только от самого вида функции, но и от того, на какой области определения ее рассматривают.

 

Кубический корень

Ранее мы изучили понятие квадратного корня. Напомним, что извлечение квадратного корня – это операция, обратная возведению в квадрат. Другими словами, функция

20hgf

является обратной для у = х2.

Встает вопрос – а можно ли придумать функцию, обратную возведению в куб? Конечно же да, ведь мы убедились в том, что функция у = х3 обратима. Называют же функцию, обратную у = х3, кубическим корнем.

21gfdg

Можно дать и другое определение, не использующее понятие функции:

22gfdfg

Например, мы знаем, что число 5 в кубе равно 125:

53 = 125

Это значит, что кубический корень из 125 равен 5.

Для обозначения кубического корня используют тот же знак радикала, что и для квадратного корня. Чтобы их отличать друг от друга, в случае с кубическим корнем перед знаком радикала ставят тройку:

23gfdg

Заметим важное отличие кубического и квадратного корня. Мы привыкли, что под знаком радикала не должно стоять отрицательное число. Но кубический корень из отрицательного числа извлечь можно. Например, мы знаем, что (– 6)3 = – 216. Отсюда следует, что

24gfdg

График кубического корня можно получить, просто построив функцию, обратную у = х3:

25gfdfg

Корни n-ой степени

Аналогично кубическому корню можно ввести понятие и корня произвольной n-ой степени.

26gfdgh

Для обозначения корня n-ой степени используется знак радикала, перед которым стоит число n. Приведем пример. Мы знаем, что 25 = 32. Это значит, что корень 5-ой степени из 32 равен 2:

27hgfh

Мы помним, что все степенные функции вида у = хсхожи друг с другом и при этом могут быть разбиты на два класса, в зависимости от четности или нечетности показателя степени n. Если n– четное число (2, 4, 6…), то график будет похож на параболу у = х2, просто он будет чуть сильнее «прижат» к оси Ох вблизи точки О (0;0), но вместе с тем он будет и быстрее возрастать:

28hfgh

Если же показателем n является нечетное число, то график у = хбудет схож с графиком у = х3:

29gfgh

Мы видим, что при нечетном показателе получается строго монотонная (возрастающая) функция. Следовательно, она обратима. Функция, обратная функции у = хn, и будет корнем степени n.

Если нечетно, то корень можно извлечь и из отрицательного числа. Так, известно, что (– 3)7 = – 2187. Это значит, что корень седьмой степени из (– 2187) равен (– 3):

30gfdfg

Очевидно, что корень получится отрицательным, если под ним стоит отрицательное число. Если же подкоренное выражение положительно, то и сам корень положителен. Более того, можно заметить, что корень из отрицательного числа равен корню из противоположенного ему положительного числа, взятого со знаком минус:

31fdg

В общем случае графики всех корней нечетных степеней будут похожи на график кубического корня:

32gdfg

Несколько сложнее дело обстоит в том случае, если показатель является четным. Мы уже выяснили, что у = х2 – это необратимая функция. Аналогично и любая другая степенная функция у = хнеобратима. Однако у = х2 обратима, если наложить дополнительное ограничение: х ≥ 0. Аналогично, при использовании такого же ограничения, обратимой будет и любая функция у = хn, где – четное число. График такой функции будет похож на квадратный корень:

33gfdfg

При четном значении n корень n-ой степени нельзя извлечь из отрицательного числа. Действительно, попробуем возвести в четную степень положительное число:

54 = 5•5•5•5 = 625

Получили другое положительное число. Теперь попробуем возвести в четную степень отрицательное число:

(– 5)4 = (– 5)•(– 5)•(– 5)•(– 5) = 625

Результат снова положительный! Минусы у отрицательных чисел «сократились» друг с другом, и получилось положительное произведение. Но раз при возведении в четную степень всегда получается неотрицательное число, значит, и под четным корнем должно также стоять неотрицательное число. Поэтому подкоренное выражение не может быть отрицательным.

 

Арифметические корни n-ой степени

Мы видим, что складывается не очень удобная для математиков ситуация: корни n-ой степени из отрицательного числа можно извлечь, если – нечетное число, но при четном такая операция уже недопустима. Это порождает много проблем при работе с корнями. Для устранения этих проблем вводится понятие арифметического корня степени n. Его особенность в том, что он всегда извлекается из неотрицательного числа и сам принимает значения, не меньшие нуля.

34gdfgd

Заметим, что корень нечетной степени из отрицательного числа всегда можно выразить с помощью арифметического корня, просто вынеся знак минус из-под корня:

35gfdg

Поэтому арифметических корней вполне хватает для работы в любых ситуациях.

Определение корня можно записать в более формализованном виде:

36gdfg

Это значит, что

37gdfg

Проиллюстрируем использование этой формулы:

38gfdfg

Свойства корня n-ой степени

Далее рассмотрим некоторые свойства корней степени n, помогающие вычислять их значения. Сразу скажем, что они во многом идентичны свойствам квадратного корня.

39gfdfg

Для доказательства этого свойства правую часть в n-ую степень:

40fdfg

Приведем примеры использования этого свойства:

41gdfg

Отсюда следует, что множители можно вносить и выносить из-под знака корня:

42gfdg

Следующее свойство помогает извлекать корни из дробей.

43gfg

Доказывается это свойство так же, как и первое. Возведем в n-ую степень правую часть формулы:

44gfdg

Продемонстрируем применение доказанного тождества:

45gfdfg

Заметим, что если под корнем находится степень какого-то числа, то ее вынести из-под радикала:

46hfgh

47gdfg

Доказать это можно, разложив число am в произведение:

am =a•a•a…•a

Всего справа стоит множителей. Теперь извлечем корень степени n:

48gfdg

Справа всё те же m множителей, а потому

49hfdgh

Таким образом, получаем, что

50gfdfg

Покажем несколько примеров использования этого правила:

51gdfg

Далее посмотрим, как извлекать корень из другого корня.

52dgh

Для доказательства возведем корень в левой части формулы в степень mn:

53gfdh

По определению корня получаем, что

54gfdg

Проиллюстрируем использование данного правила:

55hggfh

Последнее свойство, которое нам осталось изучить, называют основным свойством корня.

56hgfgh

Доказательство записывается всего в одну строчку:

57gdfgh

Степени в корне и под ним можно «сокращать»:

58gfh

59hgfh

Сравнение корней

Естественно, что большинство корней – это не целые, а иррациональные числа, которые довольно сложно вычислять. Тем не менее есть несколько правил, которые помогают оценивать их значение. Из графиков корней видно, что все они являются возрастающими функциями. Поэтому, если необходимо сравнить два корня одной степени, достаточно сравнить их подкоренные выражения. Тот корень, у которого под корнем стоит большее число, и будет больше

60hgfgh

В частности, справедливы неравенства:

61gdfg

В случае, если у корней различаются степени, следует постараться преобразовать их так, чтобы степени всё же совпали.

 

Пример. Сравните числа

62gfdg

Решение. Преобразуем первое число, чтобы у нас получился корень шестой степени:

63gfgd

Так как 121 > 119, то и

64hgfh

 

Пример. Сравните числа

65ggh

Решение. Сначала избавимся от вложенных корней:

66hgfh

Получили два кубических корня. Меньше тот из них, у которого под радикалом меньшее число:

67ghfgh

 

Пример. Сравните корни

68hgfgh

Решение. Имеем корни 7-ой и 4-ой степени. К какой одинаковой степени можно привести оба корня? Это число 28, ведь оно представляет собой произведение 7•4:

69gfdfg

Так как 16384 > 14641, то и

70fdg

 

ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
Какая из этих ф-ций НЕ является обратимой?
1у = х3
2у = х2, при х ⩾ 0
3у = х2, при х ⩽ 0
4у = х2
Ответить
4
Вопрос: 2
Какая ф-ция всегда обратима?
1Степенная
2Строго монотонная
3у = |x|
4Квадратичная
Ответить
2
Вопрос: 3
Чему равен корень четвертой степени из 81?
13
24
39
427
Ответить
1
Вопрос: 4
Укажите значение кубического корня из 64:
116
22
34
415
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

Какая из этих ф-ций НЕ является обратимой?
1) у = х3 2) у = х2, при х ⩾ 0 3) у = х2, при х ⩽ 0 4) у = х2
2 вопрос:

Какая ф-ция всегда обратима?
1) Степенная 2) Строго монотонная 3) у = |x| 4) Квадратичная
3 вопрос:

Чему равен корень четвертой степени из 81?
1) 3 2) 4 3) 9 4) 27
4 вопрос:

Укажите значение кубического корня из 64:
1) 16 2) 2 3) 4 4) 15
Посмотреть ответы
Правильные ответы:
1 вопрос: у = х2
2 вопрос: Строго монотонная
3 вопрос: 3
4 вопрос: 4