Алгебра

Уравнения с модулем и параметрами
План урока:
Модуль числа
Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:
|9| = |– 9| = 9
|674| = |– 674| = 674
|2,536| = |– 2,536| = 2,536
Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:
Именно такое определение обычно и применяется в математике.
Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:
Также модуль возникает при извлечении квадратного корня из четной степени числа:
В частности, если n = 1, получим формулу:
Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:
Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:
В результате получилась «галочка».
Пример. Постройте график ф-ции у = |х2 – 4х + 3|
Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:
Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х2 – 4х + 3|, надо перевернуть эту часть графика:
Решение уравнений с модулем
Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид
|у(х)| = b
где b – какое-то число, а у(х) – произвольная ф-ция.
Если b< 0, то ур-ние корней не имеет, ведь модуль не может быть отрицательным.
Пример. Найдите корни ур-ния
|125x10 + 97x4– 12,56х3 + 52х2 + 1001х – 1234| = – 15
Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.
Ответ: корни отсутствуют.
Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.
Пример. Решите ур-ние
|13х – 52| = 0
Решение.
Ясно, что подмодульное выр-ние равно нулю:
13х – 52 = 0
13х = 52
х = 4
Ответ: 4.
Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:
|b| = b
|– b| = b
То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.
Пример. Решите ур-ние
|х| = 10
Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.
Ответ: 10; (– 10).
Пример. Решите ур-ние
|10х + 5| = 7
Решение. Исходное ур-ние разбивается на два других ур-ния:
10х + 5 = 7 или 10х + 5 = – 7
10х = 2 или 10х = – 12
х = 0,2 или х = – 1,2
Ответ: 0,2; (– 1,2).
Пример. Найдите корни ур-ния
|x2– 2х – 4| = 4
Решение. Снова заменим исходное равенство на два других:
x2– 2х – 4 = 4 или x2– 2х – 4 = – 4
Имеем два квадратных ур-ния. Решим каждое из них:
x2– 2х – 4 = 4
x2– 2х – 8 = 0
D = b2– 4ас = (– 2)2 – 4•1•(– 8) = 4 + 32 = 36
х1 = (2 – 6)/2 = – 2
х2 = (2 + 6)/2 = 4
Нашли корни (– 2) и 4. Решаем второе ур-ние:
x2– 2х – 4 = – 4
x2– 2х = 0
х(х – 2) = 0
х = 0 или х – 2 = 0
х = 0 или х = 2
Получили ещё два корня: 0 и 2.
Ответ: – 2, 4, 0, 2
Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:
|у(х)| = |g(x)|
Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.
Пример. Решите ур-ние
|x2 + 2x– 1| = |х + 1|
Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:
x2 + 2x– 1 = х + 1 или x2 + 2x– 1 = – (х + 1)
х2 + х – 2 = 0 или х2 + 3х = 0
Решим 1-ое ур-ние:
х2 + х – 2 = 0
D = b2– 4ас = 12 – 4•1•(– 2) = 1 + 8 = 9
х1 = (1 – 3)/2 = – 1
х2 = (1 + 3)/2 = 2
Теперь переходим ко 2-омуур-нию:
х2 + 3х = 0
х(х + 3) = 0
х = 0 или х + 3 = 0
х = 0 или х = – 3
Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.
Ответ:(– 1), (– 2), 2, 0.
Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать. Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.
Пример. Найдите решение уравнения, содержащего модуль:
|х2 + 3,5х – 20| = 4,5х
Решение. Рассмотрим два отдельных равенства:
х2 + 3,5х – 20 = 4,5х илих2 + 3,5х – 20 = – 4,5х
х2 – х – 20 = 0 или х2 + 8х – 20 = 0
Решим каждое из полученных квадратных ур-ний.
х2 – х – 20 = 0
D = b2– 4ас = 12 – 4•1•(– 20) = 1 + 80 = 81
х1 = (1 – 9)/2 = – 4
х2 = (1 + 9)/2 = 5
х2 + 8х – 20 = 0
D = b2– 4ас = 82 – 4•1•(– 20) = 64 + 80 = 144
х3 = (– 8 – 12)/2 = – 10
х4 = (– 8 + 12)/2 = 2
Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:
4,5х ≥ 0
Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.
Ответ: 2 и 5
Мы рассмотрели три случая, когда ур-ние имеет вид:
- у(х) = b (b– это некоторая константа)
- |у(х)| = |g(x)|
- |у(х)| = g(x)
Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.
Пример. Найдите корни ур-ния
|x + 1| + |x– 4| = 6
Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:
Если отметить обе точки на прямой, то они образуют на ней 3 интервала:
Исследуем ур-ние на каждом из полученных промежутков.
Так как при х <– 1 оба подмодульные выр-ния отрицательны, то можно записать, что
|x + 1| = – (х + 1) = – х – 1
|x– 4| = – (х – 4) = – х + 4
Тогда ур-ние примет вид
|x + 1| + |x– 4| = 6
– х – 1 – х + 4 = 6
–2х = 3
х = – 1,5
Это значение удовлетворяет условию х <– 1, поэтому корень верный.
Далее изучим случай, когда х∊[– 1; 4). Здесь отрицательно только выражение x– 4, поэтому модули заменяются так:
|x + 1| = х + 1
|x– 4| = – (х – 4) = – х + 4
Ур-ние примет вид:
|x + 1| + |x– 4| = 6
x + 1 – x+ 4 = 6
5 = 6
Получили неверное тождество. Получается, что на промежутке [– 1; 4) корней нет.
При х ≥4 выр-ния х – 4 и х + 1 положительны, поэтому
|x + 1| = х + 1
|x– 4| = х – 4
Исходное ур-ние будет выглядеть так
|x + 1| + |x– 4| = 6
х + 1 + х – 4 = 6
2х = 9
х = 4,5
Найденный корень удовлетворяет условию х ≥4, поэтому он также должен быть включен в ответ.
Уравнения с параметрами
Изучим ур-ния:
5х = 10
5х = 15
5х = 20
Для решения каждого из них надо число справа поделить на 5 (множитель перед х). В итоге получаем значения х, равные 2, 3 и 4.
Теперь обозначим число в правой части буквой, например, как v. Тогда все эти ур-ния будут выглядеть одинаково:
5х = v
Решением таких ур-ний будет дробь v/5.
Надо понимать разный смысл, который мы вкладываем при этом в буквы х и v. Через х мы обозначили переменную, то есть ту величину, значение которой необходимо найти. Под буквой v подразумевалась заранее известная величина, то есть константа, которая известна заранее в каждом конкретном ур-нии. Такую величину называют параметром, а ур-ние 5х = v называют уравнением с параметром.
Изучая уравнение с параметром, мы рассматриваем не одно конкретное ур-ние, а сразу целую группу, или семейство ур-ний. Например, все ур-ния первой степени можно описать в виде
ах + b= 0
где х – это переменная величина, а числа а, b– это параметры. Для описания квадратного ур-ния в общем виде необходимы уже три параметра (а, b и с):
ах2 + bx + c = 0
Параметры встречаются не только при описании ур-ний, но и, например, при рассмотрении функций. Так, линейная функция задается формулой у = kx + b. Здесь числа k и b являются параметрами. Так как ур-ние у = kx + b задает на плоскости прямую линию, то величины k и b порою называют параметрами уравнения прямой.
Если при решении обычного ур-ния мы определяем значение его корней в виде конкретных чисел, то при решении ур-ний с параметром находят формулу, позволяющую при заданном значении параметра вычислить значение корня.
Пример. Решите ур-ние
х2 – 2ах = 0
и найдите его корни при значении параметра а, равном 3.
Решение. Вынесем множитель х за скобки:
х2 – 2ах = 0
х(х – 2а) = 0
х = 0 или х – 2а = 0
х = 0 или х = 2а
Получили, что при любом значении параметра а ур-ние имеет два корня. Один из них равен нулю при любом значении а, а второй вычисляется по формуле х = 2а:
при а = 3х = 2•3 = 6
Ответ: есть два корня – 0 и 2а. При а = 2 корни равны 0 и 6.
Пример. Решите ур-ние
р2х – 3рх = р2 – 9
Решение. Слева вынесем за скобки множитель рх, а выр-ние справа преобразуем, используя формулу разности квадратов:
рх(р – 3) = (р – 3)(р + 3)
Возникает желание поделить обе части рав-ва на р(р – 3), чтобы выразить х. Однако сразу так делать нельзя, ведь если величина р(р – 3) равна нулю, то получится деление на ноль.
Поэтому сначала изучим случаи, когда один из множителей слева равен нулю. Если р = 0, то мы получим рав-во
0•х•(0 – 3) = (0 – 3) (3 – 0)
0 = – 9
Это неверное тождество, а потому при р = 0 ур-ние корней не имеет.
Если р – 3 = 0, то есть р = 3, получится следующее
3•х•0 = 0•(3 + 3)
0 = 0
Это равенство верно при любом х. Значит, при р = 3 корнем ур-ния является любое число.
Если же р≠ 0 и р ≠ 3, то произведение р(р – 3) также не равно нулю, а потому обе части равенства можно поделить на р(р – 3). Тогда получим
В этом случае ур-ние имеет единственный корень.
Ответ: при р = 0 корней нет; при р = 3 корнем является любое число; при других рх = (р + 3)/р.
Часто в задаче требуется не выразить корень ур-ния через параметр, а лишь оценить количество корней ур-ния или диапазон их значений.
Пример. Сколько корней имеет ур-ние
|х2 – 6х + 5| = b
при различных значениях параметра b.
Решение. Будем решать ур-ние графическим методом. Для этого сначала построим график у = |х2 – 6х + 5|. В модульных скобках находится обычная квадратичная функция, чьи ветви смотрят вверх. Найдем нули функции:
х2 – 6х + 5 = 0
D = b2– 4ас = (– 6)2 – 4•1•5 = 36 + 20 = 16
х1 = (6 – 4)/2 = 1
х2 = (6 + 4)/2 = 5
Итак, нули ф-ции – это точки 1 и 5. Найдем координату х0 вершины параболы по формуле:
х0 = –b/2a = 6/2 = 3
Подставив х0 в квадратичную ф-цию найдем координату у0 вершины параболы:
32 – 6•3 + 5 = 9 – 18 + 5 = – 4
Теперь построим квадратичную ф-цию:
Для построения графика, содержащего модуль функции, надо отобразить точки с отрицательными ординатами (они находятся ниже оси Ох) симметрично относительно оси Ох:
Мы построили график левой части ур-ния. График правой части представляет собой горизонтальную прямую у = b. Можно выделить 5 различных случаев взаимного расположения этих графиков:
При b< 0 прямая пролегает ниже графика. Общих точек у графиков нет, а потому ур-ние корней не имеет.
При b = 0 прямая у = 0 касается графика в 2 точках: (1; 0) и (5; 0). Получаем 2 корня.
Если 0 <b< 4, то прямая пересекает график в 4 точках.
При b = 4 прямая у = 4 касается перевернутой вершины параболы, а также пересекает ветви ещё в 2 точках. Итого 3 корня.
Наконец, при b>4 есть горизонтальная прямая пересекает график лишь в 2 точках, то есть получаем 2 корня.
Ответ: нет корней при b< 0; 2 корня при b = 0 и b> 4; 3 корня при b = 4; 4 корня при 0 <b< 4.
Пример. При каком а ур-ние
х4 – (а + 2)х2 + 3а – 3 = 0
имеет ровно 4 корня?
Решение. Это ур-ние является биквадратным, то есть для его решения нужно произвести замену у = х2:
у2 – (а + 2)у + 3а – 3 = 0 (1)
Для того, чтобы исходное ур-ние имело 4 корня, необходимо, чтобы у квадратного уравнения с параметром(1) было два положительных корня: у1 и у2. Тогда, проводя обратную замену х2 = у1 и х2 = у2, мы получим два разных квадратных ур-ния, корни которых будут равны
Если же хоть один из двух корней, например, у1, окажется равным нулю, то величины
Совпадут (они обе будут равны нулю), и останется лишь 3 корня. Если же у1 будет отрицательным числом, то ур-ние
х2 = у1
вовсе не будет иметь решений, и тогда останется не более 2 корней.
Итак, решим ур-ние (1):
у2 – (а + 2)у + 3а – 3 = 0
D = b2– 4ас = (– (а + 2))2 – 4•1•(3а – 3) = (а + 2)2 – 12 а + 12 =
= а2 + 4а + 4 – 12а + 12 = а2 – 8а + 16 = а2 – 2•4•а + 42 = (а – 4)2
Чтобы у ур-ния (1) было два различных корня, дискриминант должен быть положительным. Величина (а – 4)2 положительна при всех значениях а, кроме а = 4, которое обращает дискриминант в ноль. Значит, а ≠ 4.
Извлечем корень из дискриминанта:
Корни ур-ния (1) можно вычислить по формулам:
И у1, и у2 должны быть положительными величинами, однако у1 меньше, чем у2 (ведь для его вычисления дискриминант брали со знаком «минус», а не «плюс»). Поэтому достаточно записать нер-во:
Получили неравенство, содержащее модуль. Для избавления от модульных скобок в нер-ве рассмотрим 2 случая. Если а – 4>0, то есть а > 4, выполняется равенство
|а – 4| = а – 4
Тогда имеем
а + 2 – (а – 4) > 0
6> 0
Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.
Если а < 4, то справедливо соотношение
|а – 4| = – (а – 4)
Тогда получится следующее:
а + 2 – |а – 4|> 0
а + 2 – (– (а – 4)) > 0
а + 2 + а – 4 > 0
2а > 2
а > 1
Итак, при условии, что а< 4, должно выполняться нер-во а > 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение
а > 4
можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).
Ответ: а∊(1; 4)∪(4; + ∞).
Пример. При каких параметрах а у ур-ния
х2 – 2(а + 1)х + а2 + 2а – 3 = 0
существует два корня, которые принадлежат интервалу (– 5; 5)?
Решение. Данное ур-ние является квадратным. Найдем его дискриминант:
D = b2– 4ас = (– 2(а + 1))2 – 4•1•( а2 + 2а – 3) = 4(а2 + 2а + 1) – 4(а2 + 2а – 3) =
= 4(а2 + 2а + 1 – а2– 2а + 3) = 4•4 = 16
Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам
Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:
Значит, должны выполняться два нер-ва
х1>– 5и х2<5
а – 1 >– 5 и а + 3 < 5
а >– 4 и а < 2
Эти два нер-ва выполняются, если а∊(– 4; 2)
Ответ: (– 4; 2)
ВОПРОСЫ И ЗАДАНИЯ
Укажите корни уравнения |2х – 8| = 10
1) (-1) 2) 9 3) 1 и 9 4) (-1) и 9
Какие корни есть у уравнения |4x + 3| = |2x + 3| ?
1) 1 и 0 2) (-1) и 0 3) 1
Найдите корни уравнения |25x– 1| = 75х + 9
1) (– 0,08) 2) (– 0,2) 3) (– 0,2) и (– 0,08) 4) корней нет
Укажите корни ур-ния ах2 – х = 0
1) 1/а 2) а2 3) 0 и 1/а