Геометрия

Урок 4: Площадь многоугольников

Площадь многоугольников

Формулы вычисления площади квадрата и прямоугольника известны ещё из младших классов школы. Сегодня мы научимся вычислять площадь других многоугольников – треугольников, параллелограммов, трапеций.
slide6

                 Именная карта банка для детей 
                 с крутым дизайном, +200 бонусов

Перейти

Закажи свою собственную карту банка и получи бонусы

Перейти slide8

План урока:

Площадь прямоугольного треугольника

Площадь произвольного треугольника

Площадь параллелограмма

Площадь ромба

Площадь трапеции

 

Площадь прямоугольного треугольника

Пусть в прямоугольном треугольнике известны два его катета. Обозначим их буквами а и b. Как тогда вычислить площадь такого треуг-ка?

Прямоугольный треугольник можно достроить до прямоугольника:

1 ploshad mnogougolnikov

Площадь получившегося прямоугольника равна произведению чисел а и b. С другой стороны, прямоугольник состоит из двух треуг-ков площадью S, поэтому его общая площадь составляет 2S. Тогда можно записать, что

2 ploshad mnogougolnikov

 

Задание. Катеты прямоугольного треугольника имеют длины 3 и 4. Определите его площадь.

Решение. Просто подставляем в формулу вместе букв a и b числа 3 и 4:

3 ploshad mnogougolnikov

 

Задание. Площадь прямоугольного треугольника равна 100, а один катет больше другого вдвое. Найдите оба катета.

Решение. Пусть меньший катет равен х, тогда больший катет будет равен 2х. Выразим площадь прямоугольного треугольника через х:

4 ploshad mnogougolnikov

Естественно, нас интересует только положительный корень, а отрицательный можно отбросить:

x = 10

Меньший катет оказался равным 10, тогда больший катет, который вдвое больше, будет равен 20.

Ответ: 10; 20.

 

Задание. Найдите площадь фигуры, показанной на рисунке. Сторона каждой клеточки имеет длину, равную единице:

5 ploshad mnogougolnikov

Решение. Эту фигуру можно разбить на квадрат со стороной 8 и два прямоугольных треуг-ка, то есть всего на три фигуры:

6 ploshad mnogougolnikov

Подсчитаем площадь каждой из трех фигур по отдельности:

7 ploshad mnogougolnikov

Чтобы найти площадь всей фигуры, достаточно просто сложить три полученных числа:

8 ploshad mnogougolnikov

 

Задание. Вычислите площадь треуг-ка, изображенного на рисунке (площадь каждой отдельной клеточки составляет единицу):

9 ploshad mnogougolnikov

Решение. Здесь проблема заключается в том, что треуг-к прямоугольным не является. Однако можно построить прямоуг-к, который будет состоять сразу из 4 треуг-ков:

10 ploshad mnogougolnikov

Мы можем найти как площадь всего прямоугольника (обозначим ее как S), так и площади трех прямоугольных треуг-ков S1, S2 и S3:

11 ploshad mnogougolnikov

 

Площадь произвольного треугольника

Перейдем к более сложному случаю, когда необходимо подсчитать площадь произвольного треугольника, не являющегося прямоугольным. Предположим, надо найти площадь произвольного ∆АВС. Опустим из А на сторону ВС высоту АН:

12 ploshad mnogougolnikov

В результате мы получили два прямоугольных треуг-ка, ∆АВН и ∆АCН. Мы уже знаем, как найти их площади:

13 ploshad mnogougolnikov

Общая площадь всего ∆АВС равна сумме площадей ∆АВН и ∆АСН. Запишем ее и вынесем общий множитель АН/2 за скобки:

14 ploshad mnogougolnikov

В скобках стоит сумма ВН + НС. Но ведь эта сумма равна длине стороны ВС! Тогда окончательно формулу можно записать в виде:

15 ploshad mnogougolnikov

Получили, что для вычисления площади произвольного треугольника надо сначала умножить его высоту на сторону, на которую она падает, а далее поделить результат на 2. Однако для полного доказательства этого факта надо рассмотреть особый случай, когда высота в треуг-ке падает не на сторону, а на ее продолжение (такая ситуация возникает в тупоугольном треуг-ке):

16 ploshad mnogougolnikov

На рисунке снова получились всё те же прямоугольные треуг-ки ∆АСН и ∆АВН. Запишем формулы их площади:

17 ploshad mnogougolnikov

Отличие в том, что на этот раз площадь АВС можно вычислить не как сумму, а как разницу этих площадей:

18 ploshad mnogougolnikov

Итак, можно сформулировать следующее правило:

19 ploshad mnogougolnikov

Примечание. Часто сторону, на которую опущена высота, называют основанием треуг-ка.

 

Задание. Вычислите площадь ∆АВС, если сторона АВ имеет длину 7, а высота СН равна 4.

20 ploshad mnogougolnikov

Решение. В данной задаче на сторону длиной 7 падает высота длиной 4. Надо просто подставить эти числа в формулу:

21 ploshad mnogougolnikov

 

Задание. Докажите, что медиана треуг-ка разбивает его на два равновеликих треуг-ка.

Решение.

Пусть в ∆АВС проведена медиана СМ. Требуется доказать, что

22 ploshad mnogougolnikov

Важно заметить, что СН будет являться высотой не только для ∆АВС, но также и для ∆СВМ и ∆САМ. Обозначим СН как h, а АВ как а. Тогда мы можем найти длины отрезков ВМ и АМ, ведь медиана делит сторону АВ пополам:

23 ploshad mnogougolnikov

Получили одно и то же значение, то есть площади треуг-ков равны.

В рассмотренной задаче мы использовали тот факт, что у нескольких треуг-ков может быть общая высота. Общая высота используется и в многих других геометрических задачах.

 

Задание. Предложите способ, как разделить треуг-к, показанный на рисунке, на три равновеликих треуг-ка:

24 ploshad mnogougolnikov

Чтобы треуг-ки были равновелики, достаточно, чтобы у них была общая высота, а основания, на которые эта высота падает, были бы равны друг другу. Поэтому можно просто поделить нижнюю сторону на три одинаковых отрезка (длиной по 7 клеток) и соединить концы полученных отрезков с противоположной вершиной:

25 ploshad mnogougolnikov

Красной линией здесь показаны границы треуг-ков, а штриховой – их общая высота СН. Вычислить площадь каждого из треуг-ков можно по следующим формулам:

26 ploshad mnogougolnikov

Но отрезки BD, DE и EA одинаковы (по 7 клеточек), поэтому одинаковы будут и площади:

27 ploshad mnogougolnikov

Заметим, что необязательно делить на три одинаковых отрезка именно нижнюю сторону. Допустимы и два других варианта решения:

28 ploshad mnogougolnikov

Но и это не единственные решения задачи. Попробуйте самостоятельно предложить ещё несколько вариантов.

Формула площади треуг-ка показывает, что между длинами высот и сторон есть взаимосвязь.

 

Задание.В ∆РЕТ РЕ = 72, ЕТ = 45. Высота ТН имеет длину 40. Найдите высоту РМ.

29 ploshad mnogougolnikov

Решение.

Зная ТН и РЕ, мы сможем найти площадь треуг-ка:

30 ploshad mnogougolnikov

Теперь запишем эту формулу площади в ином виде, когда используется высота МР и сторона ЕТ

31 ploshad mnogougolnikov

Величину SРЕТ мы только что вычислили, а длина ЕТ известна из условия, поэтому можно подставить их в формулу:

32 ploshad mnogougolnikov

 

Площадь параллелограмма

Для вычисления площади параллелограмма введем понятие «высота параллелограмма». Так называют перпендикуляр, опущенный на сторону параллелограмма (ее в такой ситуации часто называют основанием) из одной из вершин параллелограмма. Важно понимать, что высоты могут упасть не на само основание, а на его продолжение. Так как у каждого параллелограмма есть 4 вершины, а из каждой из них можно опустить высоту на две противоположных вершины, то всего у параллелограмма должно быть 8 высот:

33 ploshad mnogougolnikov

На рисунке синим показаны высоты параллелограмма, а красным цветом отмечены продолжения оснований. Оказывается, что площадь параллелограмма равна произведению его высоты и основания, на которую она опущена. Докажем это.

Опустим в параллелограмме АВСD высоты ВН и СК:

34 ploshad mnogougolnikov

В результате получили четырехуг-к ВНКС, который является прямоугольником, ведь все его углы прямые. Очевидно, что ∆АВН и ∆DCK равные. Это можно доказать тем, что они являются прямоугольными, у них есть одинаковые гипотенузы АВ и CD (они равны как противоположные стороны параллелограмма) и одинаковые катеты ВН и СК (это уже противоположные стороны прямоугольника ВНКС).

Раз они равны, то одинаковы и их площади:

35 ploshad mnogougolnikov

Но величину Sможно заменить на S2. В свою очередь полученная сумма равна площади прямоугольника ВНКС, которая может быть вычислена как произведение его смежных сторон:

36 ploshad mnogougolnikov

Но ВН – это высота, а НК – основание параллелограмма. То есть мы доказали следующее утверждение:

37 ploshad mnogougolnikov

 

Задание. Найдите площадь параллелограмма, изображенного на рисунке:

38 ploshad mnogougolnikov

Решение. По рисунке несложно определить длину как основания, так и высоты параллелограмма:

39 ploshad mnogougolnikov

Далее надо просто перемножить эти длины:

40 ploshad mnogougolnikov

Примечание. Конечно, если вы вдруг забыли формулу площади параллелограмма, можно просто разделить его на прямоугольник и два прямоугольных треуг-ка:

41 ploshad mnogougolnikov

Дальше можно просто посчитать по отдельности S1, S2и S3, после чего сложить их. Попробуйте сделать это самостоятельно.

 

Задание. Площадь параллелограмма равна 162 см2, а одна из его высот вдвое короче основания, к которому она проведена. Найдите эту высоту и основание.

Решение. В данной задаче не потребуется даже рисунок. Обозначим высоту буквой h, тогда основание, которое вдвое длиннее, составляет 2h. Произведение этих чисел – это площадь, то есть оно равно 162:

42 ploshad mnogougolnikov

Высота равна 9, а основание будет вдвое больше, то есть его длина равна 18.

Ответ: 9 и 18.

 

Задание. Смежные стороны параллелограмма ABCD имеют длину 12 и 14 см, а угол между ними равен 30°. Вычислите его площадь.

Решение. Опустим на сторону длиной 14 см высоту:

43 ploshad mnogougolnikov

Для вычисления площади надо сначала найти высоту ВН. Её можно определить из ∆АВН. Он является прямоугольным, а его острый угол∠А = 30°. У такого треуг-ка катет, лежащий против 30°, вдвое меньше АВ:

44 ploshad mnogougolnikov

 

Площадь ромба

Многие четырехуг-ки, изученные нами ранее, являются частными случаями параллелограмма. Для прямоугольника и квадрата мы уже знаем формулы вычисления площади. Осталось разобраться с ромбом. Ясно, что его площадь можно найти также, как и у параллелограмма. Однако площадь ромба можно посчитать и зная только его диагонали.

Построим ромб и проведем в нем диагонали:

45 ploshad mnogougolnikov

Нам уже известно, что диагонали ромба пересекаются под прямым углом, а точка их пересечения является серединой для каждой диагонали:

46 ploshad mnogougolnikov

Получается, что диагонали разбивают ромб на 4 одинаковых прямоугольных треуг-ка. Высчитаем, к примеру, SAOB:

47 ploshad mnogougolnikov

В результате мы доказали следующее утверждение:

48 ploshad mnogougolnikov

 

Задание. Одна диагональ ромба равна 3,2 дм, а другая составляет 14 см. Найдите его площадь.

Решение. Для начала надо перевести все длины в одинаковые единицы измерения. Заменим дециметры на сантиметры:

49 ploshad mnogougolnikov

 

Задание. Одна диагональ ромба в три раза длиннее другой, а площадь фигуры составляет 150. Вычислите длину диагоналей ромба.

Решение. Обозначим меньшую диагональ как х, тогда вторая будет равна 3х. Выразим площадь через х:

50 ploshad mnogougolnikov

Вторая диагональ ромба будет втрое длиннее, то есть ее длина равна 3•10 = 30

Ответ: 10 и 30 см.

 

Площадь трапеции

Осталось рассмотреть единственный известный нам вид четырехуг-ка, который не является параллелограммом. Это трапеция. Для вычисления ее площади также потребуется высота. Под ней подразумевают перпендикуляр, опущенный из вершины трапеции на одно из ее оснований. Другими словами, высота трапеции – это расстояние между основаниями трапеции.

В произвольной трапеции ABCD, где АD – большее основание, опустим из В высоту (то есть перпендикуляр) на AD, а из D– высоту на ВС. Также проведем диагональ ВD:

51 ploshad mnogougolnikov

Ясно, что общая площадь трапеции будет равна сумме площадей ∆АВDи ∆ВСD. В свою очередь площадь каждого из них можно подсчитать по стороне и опущенной на нее высоте. Высоты мы как раз и провели, это ВН и DK, поэтому можно записать:

52 ploshad mnogougolnikov

Теперь заметим, что отрезки ВН и КD одинаковы, ведь фигура ВНDК является прямоугольником. Тогда площадь ∆ВСD можно записать в таком виде:

53 ploshad mnogougolnikov

В итоге мы доказали, что для вычисления площади трапеции следует ее высоту умножить на сумму длин оснований, после чего поделить результат на два. Обычно этот факт записывают следующим образом:

54 ploshad mnogougolnikov

 

Задание. У трапеции АВСD основаниями являются АВ (21 см) и CD (17 см). Высота ВН составляет 7 см. Найдите площадь трапеции.

55 ploshad mnogougolnikov

Решение. Это простая задача на использование формулы площади трапеции:

56 ploshad mnogougolnikov

 

Задание. Найдите площадь прямоугольной трапеции, показанной на рисунке (площадь клеточки равна единице):

57 ploshad mnogougolnikov

Решение. На рисунке показана прямоугольная трапеция. Её высота равна длине ее правой боковой стороны трапеции. Покажем размеры, необходимые нам для выполнения расчета:

58 ploshad mnogougolnikov

Считаем площадь:

59 ploshad mnogougolnikov

 

Задание. Тупой угол равнобедренной трапеции составляет 135°. Проведенная из этого угла высота делит противолежащее основание на отрезки длиной 14 и 34 см. Какова площадь трапеции?

Решение. Выполним построение:

60 ploshad mnogougolnikov

Найдем острый угол трапеции. Так как CD||АВ, то

61 ploshad mnogougolnikov

Рассмотрим ∆АDH. Он прямоугольный, а один из его острых углов равен 45°. Тогда и второй острый угол также равен 45°. То есть это равнобедренный треуг-к. Это помогает найти длину высоты DH:

62 ploshad mnogougolnikov

ведь это прямоугольныетреуг-ки с равными гипотенузой и катетом:

63 ploshad mnogougolnikov

Из равенства треуг-ков следует, что

64 ploshad mnogougolnikov

Итак, сегодня мы узнали, как вычислять площади треуг-ков и некоторых видов четырехуг-ков. В большинстве случаев предварительно необходимо найти высоту в многоугольнике. В будущем мы узнаем ещё несколько формул для вычисления площадей фигур.

 

ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
Катеты прямоугольного треуг-ка составляют 20 и 30 дм. Вычислите его площадь
1150 дм2
250 дм2
3600 дм2
4300 дм2
Ответить
4
Вопрос: 2
Высота параллелограмма имеет длину 18, а сторона, на которую падает эта высота, равна 22. Какова площадь параллелограмма?
1198
2396
340
480
Ответить
2
Вопрос: 3
Здание имеет форму ромба с диагоналями 9 и 10 метров. Какую площадь оно занимает?
145 м2
219 м2
390 м2
4180 м2
Ответить
1
Вопрос: 4
Трапеция имеет основания с длинами 15 и 13, а расстояние между этими основаниями равна 12. Вычислите площадь трапеции.
140
284
3168
4336
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

Катеты прямоугольного треуг-ка составляют 20 и 30 дм. Вычислите его площадь
1) 150 дм2 2) 50 дм2 3) 600 дм2 4) 300 дм2
2 вопрос:

Высота параллелограмма имеет длину 18, а сторона, на которую падает эта высота, равна 22. Какова площадь параллелограмма?
1) 198 2) 396 3) 40 4) 80
3 вопрос:

Здание имеет форму ромба с диагоналями 9 и 10 метров. Какую площадь оно занимает?
1) 45 м2 2) 19 м2 3) 90 м2 4) 180 м2
4 вопрос:

Трапеция имеет основания с длинами 15 и 13, а расстояние между этими основаниями равна 12. Вычислите площадь трапеции.
1) 40 2) 84 3) 168 4) 336
Посмотреть ответы
Правильные ответы:
1 вопрос: 300 дм2
2 вопрос: 396
3 вопрос: 45 м2
4 вопрос: 168
slide9

По нашей ссылке лучшие условия от Тинькофф Банка

Перейти

Получи кэшбэк до 30% и процент на остаток 5%

Перейти slide8