Математика

Урок 3: НОД

НОД и НОК

Сегодня мы узнаем «Как найти наибольший общий делитель двух чисел?», «Как найти наименьшее общее кратное двух чисел?», «Что значит взаимно простые числа?» В детском саду, перед очередным праздником, родители решили подготовить детям сюрприз. Они купили конфеты «Красный мак», «Милка», «Фундук в шоколаде». И тут появилась проблема: «На сколько одинаковых подарков можно разложить конфеты?». Родители думали, совещались, но найти ответ так и не смогли. В коридор вышел воспитатель и предложил – « Найдите НОД и все станет понятно». Но что такое НОД? Как его найти? Чем он сможет помочь – родители не знали! Вдруг, чей-то папа вспомнил, как найти наибольший общий делитель! Проблема решена.

Обложка урока взята с источника.

План урока:

Наибольший общий делитель

Взаимно простые числа

Минутка истории

 

Наибольший общий делитель

Встречаются ситуации, когда хочется понимать, на какое максимальное количество делится одновременно несколько числовых значений.

Например:

В городском парке проводился ежегодный марафон. Для участия в марафоне пришло 36 мальчиков, 24 девочки. По условиям соревнования, всех участников необходимо поделить на команды, в которые войдут  и мальчики, и девочки. Сколько одинаковых команд можно сформировать из данного количества детей?

erer
Источник

Чтобы ответь на вопрос задачи, вычислим максимальное числовое значение, являющееся делителем для количества всех ребят одновременно.

Выполним необходимые вычисления – определим существующие множители. Вычисления запишем в столбик.

Начнем с 36.

2

362

18

Полученное частное – 18, оно четное. Делитель остается прежним:

36 | 2

18 | 2

9

9 – нечетное, поэтому берем следующий делитель – 3:

36 | 2

18 | 2

9  | 3

3

Частное – простое числовое значение, делится само на себя:

36 | 2

18 | 2

9  | 3

3  | 3

1

Частное – единица, разложение окончено.

Выпишем составляющие:

36 = 2×2×3×3

Переходим к 24.

24 заканчивается четной цифрой, значит, кратно двум:

242

12

Делитель оставляем прежним, частное 12 – четное:

242

122

6

Результат деления 6, снова делим на 2:

24 | 2

12 | 2

6  | 2

3

Получили простое числовое значение, которое делится само на себя:

24 | 2

12 | 2

6  | 2

3  | 3

1

Разложение окончено. Запишем полученные компоненты:

24 = 2 × 2 × 2 × 3.

В финале выполненных вычислений мы получили:

36 = 2 × 2 × 2 × 3× 3;

24 = 2 × 2 × 2 × 3.

Давайте выберем одинаковые составляющие. Видно, что в каждом выражении такими составляющими будут: 2 ×2 × 3.

Перемножим выделенные компоненты:

2 ×2 × 3 = 12.

12 – самое большое числовое значение, на которое можно разделить оба делимых.

Мы выяснили, что всех участников можно распределить на 12 одинаковых команд.

Решая задачу,нашли самый большой делитель двух данных чисел. В арифметике число, являющееся самым большим делителем, одновременно для нескольких делимых, называют наибольшим общим делителем.

3

Для определения наибольшего общего делителя, нужно придерживаться определенного порядка выполнения математических действий:

4

Выполним задание.

Определите НОД (наибольший общий делитель) 66 и 44.

Чтобы выполнить задание будем придерживаться рассмотренного алгоритма действий.

Определим компоненты, входящие в состав числового значения.

5

Значит:

66 | 2

33

Результат деления оканчивается нечетной цифрой, проверяем по признакам делимости на 3:

6

66 | 2

33 | 3

11

Мы получили простое числовое значение

7

66 | 2

33 | 3

11 | 11

 1

     В итоге вычислений – 1, разложение окончено.

Переходим ко второму известному значению.

  • 1) Определим составляющие, входящие в состав:

Проверяем по признакам делимости. Данное числовое значение заканчивается четной цифрой, значит, оно делится на 2.

44 | 2

          22

Частное снова делится на 2:

          44 | 2    

          22 | 2

          11

В результате простое число, делим само на себя:

44 | 2    

22 | 2

11 | 11

1

Разложение окончено.

  • 2) Выпишем компоненты обоих делимых, определим одинаковые:

66 = 2 × 3 × 11

44 = 2 ×2 × 11

  • 3) Перемножим выделенные составляющие:

2 × 11=22

Выходит, что наибольший общий делитель – 22.

На письме, рядом с обозначением НОД в скобочках записывают делимые, для которых определяли наибольший общий делитель:

НОД (66;44) = 22.

 

Разберем задачу

Выпускники на праздник последнего звонка, приготовили цветы своим учителям. Они принесли 69 роз и 46 гладиолусов и разделили поровну между всеми учителями. Сколько учителей поздравили выпускники?

8
Источник

Зная, что цветы были поделены поровну, нам необходимо найти максимальную численность учителей,на которую можно разделить и розы и гладиолусы.

Для определения НОД данных делимых, воспользуемся алгоритмом вычисления:

  • 1) Разложим на составляющие:

69 | 3               46 | 2

23 | 23             23 | 23

1                       1

  • 2) Выберем общее числовое значение находящееся в составляющих :

69 = 3 × 23

46 = 2 × 23.

Нам подходит только  23.

НОД (69;46) = 23.

Наибольшим общим делителем для данных чисел будет 23. 

Выпускники поздравили 23 учителя.

 

Взаимно простые числа

Рассмотрим ситуацию.

В первой банке лежало 9 декоративных камней, во второй – 14 . Сколько  предметов интерьера, можно украсить  имеющимся материалом, если на каждое изделие использовать равное, при этом, наибольшее количество,камней из первой и второй коробки?

9
Источник

Чтобы ответить на главный вопрос задачи, нужно выполнить определенные вычисления. Для этого, разложим данные значения на простые составляющие:

14 | 2             9 | 3

 7  | 7             3 | 3

 1                   1

Выписываем компоненты, входящие в состав известных значений:

14 = 2 × 7

9 = 3 × 3

 Повторяющихся составляющих нет. Мы знаем, если любое натуральное число  умножить на 1, числовое значение не изменится. Значит, единственный, наибольший общий множитель чисел – 1.

Данным количеством камней, получится  украсить только один предмет интерьера, если использовать равное, наибольшее количество материала из обеих банок.

 В арифметике, числа, наибольшим общим множителем которых является 1, называют взаимно простыми.

10

Чтобы ответить на главный вопрос задачи, нужно выполнить определенные вычисления. Для этого, разложим данные значения на простые составляющие:

14 | 2             9 | 3

 7  | 7             3 | 3

 1                   1

Выписываем компоненты, входящие в состав известных значений:

14 = 2 × 7

9 = 3 × 3

 Повторяющихся составляющих нет. Мы знаем, если любое натуральное число  умножить на 1, числовое значение не изменится. Значит, единственный, наибольший общий множитель чисел – 1.

Данным количеством камней, получится  украсить только один предмет интерьера, если использовать равное, наибольшее количество материала из обеих банок.

 В арифметике, числа, наибольшим общим множителем которых является 1, называют взаимно простыми

11
Источник

Чтобы ответить на главный вопрос задачи,необходимо определить самое маленькое числовое значение, которое будет, без остатка делиться на 4, на 5, то есть будет кратно 4, 5.

Сначала, подберем значения, кратные четырем: 4,8,12,16,20,24,28.

Теперь, значения, кратные пяти: 5,10,15,20,25,30.

После этого, необходимо найти самое маленькое число, которое будет кратным 4, 5 одновременно.

Из перечисленных числовых значений,  подходит только 20. Оно делится без остатка на 4, на 5. Наименьшим общим кратным двух чисел будет 20.

Важно!

12

В математике существует специальный алгоритм для нахождения наименьшего общего кратного нескольких натуральных числовых значений:

13

Например:

Вычислим НОК для 30 и 32.

Чтобы выполнить нужные вычисления воспользуемся алгоритмом нахождения НОК.

14ris

 

Разберем задачу

В городе Москва, для  качественной съемки парада, приуроченного к празднику 9 Мая, организаторы подготовили квадрокоптеры с видеокамерами. Из одной точки  одновременно, будут запущены три аппарата. Время полета первого 8 минут, второго – 12.Через какое время,квадрокоптеры снова будут запущены одновременно, если по возвращению в точку запуска им меняют батарею и сразу отправляют назад.

15
Источник

Чтобы получить ответ на главный вопрос задачи, найдем наименьшее числовое значение, кратное двум данным величинам.

Для этого будем использовать рассмотренный алгоритм:

16ris

Квадрокоптеры будут одновременно запущены через 24 минуты.

Последняя задачка  на внимательность.

На уроке Ваня около доски выполнял задание. Он написал: НОК (25; 115) = 100. Подскажите Ване, верно ли он выполнил задание (не выполняя вычислений)?

17
Источник

Вначале, давайте вспомним определение НОК:

18

Из определения следует, НОК нацело делится на известные данные. Однако,видим, что 100 на 115 нацело разделить невозможно. Поэтому Ваня, допустил ошибку в своих расчетах!

Вот так легко и просто можно решить огромное количество задач, даже не совершая сложных вычислений!

Пока, вы только ученики 6 класса. Пройдет совсем немного времени и каждому придется делать главный выбор в своей жизни – «Кем стать?». Если  решите связать жизнь с программированием, интернет-ресурсами, научной деятельностью, вам нужно запомнить все правила и определения. Рассмотренные сегодня алгоритмы лежат в основе разработки, создания, компьютерных программ, сайтов, игр.

 

Минутка истории

1. Древнегреческий математик Эвклид, создавший алгоритм нахождения НОД, совершил множество математических открытий, аналогов которым ученые не нашли. Самым интересным, является то, что биографических сведений о самом Эвклиде не существует.

2. Среди бесконечного множества простых чисел, заканчивающихся на два и пять, существует только два: 2 и 5.

3. Результат суммирования  цифр числа 18, в два раза меньше этого числа. Существует только одно число такого плана.

4. Однажды, математик Абрахам де Муавр, живший в Англии, находясь в преклонном возрасте, выяснил, что временной период, занимающий сон, увеличивается ежедневно на четвертую часть часа. Проведя вычисления, он определил день, когда длительность сна достигнет суток. По его расчетам это должно произойти двадцать седьмого ноября 1754 года. Именно эта дата стала датой смерти английского ученого.

 

ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
Продолжите фразу: « Наибольшее натуральное число, на которое делится без остатка, несколько натуральных чисел называется …»
1Наименьшим общим кратным
2Наибольшим общим делителем
3Средним общим делителем
Ответить
2
Вопрос: 2
Взаимно простые числа– числа, у которых:
1Наибольший общий делитель равен 1
2Наименьшее общее кратное равно 1
3Более 2 делителей
Ответить
1
Вопрос: 3
Наименьшее общее кратное двух натуральных чисел – это …
1Натуральное число, на которое делятся нацело два натуральных числа
2Наименьшее натуральное число, которое делится без остатка на два натуральных числа
3Наименьшее натуральное число
Ответить
2
Вопрос: 4
Выберите наибольший общий делитель для чисел 3 и 7
13
27
31
Ответить
3
Вопрос: 5
Определите наименьшее общее кратное для чисел 3 и 4
16
28
312
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

Продолжите фразу: « Наибольшее натуральное число, на которое делится без остатка, несколько натуральных чисел называется …»
1) Наименьшим общим кратным 2) Наибольшим общим делителем 3) Средним общим делителем
2 вопрос:

Взаимно простые числа– числа, у которых:
1) Наибольший общий делитель равен 1 2) Наименьшее общее кратное равно 1 3) Более 2 делителей
3 вопрос:

Наименьшее общее кратное двух натуральных чисел – это …
1) Натуральное число, на которое делятся нацело два натуральных числа 2) Наименьшее натуральное число, которое делится без остатка на два натуральных числа 3) Наименьшее натуральное число
4 вопрос:

Выберите наибольший общий делитель для чисел 3 и 7
1) 3 2) 7 3) 1
5 вопрос:

Определите наименьшее общее кратное для чисел 3 и 4
1) 6 2) 8 3) 12
Посмотреть ответы
Правильные ответы:
1 вопрос: Наибольшим общим делителем
2 вопрос: Наибольший общий делитель равен 1
3 вопрос: Наименьшее натуральное число, которое делится без остатка на два натуральных числа
4 вопрос: 1
5 вопрос: 12