Алгебра

Урок 2: Функции тригонометрические

Тригонометрические функции

В прошлом уроке мы познакомились с базовым понятием тригонометрии – единичной окружностью. Сегодня мы узнаем о том, как с ее помощью определяются основные тригонометрические функции – синус, косинус, тангенс и котангенс.
slide4

Подготовка к ЕГЭ с онлайн-репетитором

Перейти

Выбери репетитора для подготовки к ЕГЭ

Перейти slide5
slide6

Подготовка к ЕГЭ с командой
лучших преподавателей

Перейти
slmob

Интенсивные курсы подготовки к ЕГЭ

Перейти
slmob10

Узнай тонкости ЕГЭ и перестань его бояться

Перейти
slmob11

Подготовка к ЕГЭ с командой
лучших преподавателей

Перейти

План урока:

Синус и косинус угла на единичной окружности

График синуса и косинуса

Тангенс угла

График тангенса

Котангенс угла

 

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

1ghfgh

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

cosα = АС/АВ

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

2gfdgd

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

3gfhd

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

АВ = sinα•ОА

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

уА = sinα

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

ОВ = cosα•ОА

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

хА = cosα

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

4gfghgh

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

5gfgh

6hgh

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 <α < 90°. На единичной окружности можно отложить любой угол, то есть теперь мы можем вычислять тригонометрические ф-ции для произвольных значений α. При этом синус и косинус могут оказаться отрицательными величинами. Например, для угла α = 2π/3 косинус окажется отрицательным, ведь координата хА соответствующей ему точки окажется левее нуля на горизонтальной оси Ох:

7hgjhj

Заметим, что знак синуса и косинуса определяется той четвертью, в которой будет располагаться точка на окружности. Углам в диапазоне 0 <α<π/2 соответствует Iчетверть, здесь все тригонометрические ф-ции принимают положительные значения. Ко II четверти относятся углы из промежутка π/2 <α<π. Здесь косинус становится меньше нуля, а синус остается положительным. В III четверти будут располагаться точки, соответствующие углам из интервала π <α< 3π/2, у них отрицательны и синус, и косинус. Наконец, к IV четверти относят углы из диапазона 3π/2 <α< 2π. Здесь отрицателен синус, а косинус больше нуля.

8gjgj

9hgfh

10gfdg

Как же определять значение синуса угла и его косинуса? Из геометрии нам уже известны их значения для трех углов: 30°, 45° и 60°:

11gfg

Далее определим тригонометрические ф-ции угла, равного нулю. Если такой угол отложить на единичной окружности, то ему будет соответствовать точкаА с координатами (1; 0). Поэтому

sin 0° = уА = 0

cos 0° = xА = 1

12gdfgd

Аналогичным образом можно найти значение этих ф-ций и для угла 90°. Прямому углу на единичной окружности соответствует точка В с координатами (0; 1). Поэтому

sin90° = уВ = 1

cos90° = xВ = 0

13gdfgd

Для определения тригонометрических ф-ций у углов, больших 90°, удобно использовать симметрию. Например, пусть необходимо вычислить синус для угла 120°. Отложим на окружности две точки, В и А. Первая будет соответствовать 120°, а вторая 60°:

14gfdfg

Видно, что эти точки находятся на одном горизонтальном уровне, то есть их ординаты (координаты у) одинаковы. При этом абсциссы у них противоположны, ведь точки симметричны относительно оси Оу. Отсюда можно сделать вывод, что

уВ = уА

хВ = – хА

Но координаты А – это синус и косинус 60°, а координаты В являются тригонометрическими ф-циями угла 120°. То есть можно записать

sin 120° = sin 60°

cos 120° = – cos 60°

Так как для угла 60° значения синуса и косинуса нам уже известны, то можно записать:

15gdfg

В будущем мы изучим более простые способы вычисления синуса и косинуса углов, больших 90°, когда построения нам уже не потребуются. Однако сразу заметим, что в первую очередь необходимо запомнить значения синуса и косинуса для пяти углов: 0°, 30°, 45°, 60°, 90°. Приведем таблицу значений тригонометрических функций:

16hfgh

Некоторые люди испытывают проблемы с запоминанием этой таблицы. Однако ее можно представить в более простом виде. Заменим числа 0, 1 и 1/2 следующими выражениями с корнями:

17hgfh

С учетом этого таблицу тригонометрических функций можно переписать так:

18hgfh

Теперь в каждой ячейке стоит дробь, у которой знаменатель равен двум. В числителе же стоит корень. Обратите внимание, что у синуса под корнем последовательно стоят числа 0, 1, 2, 3, и 4. У косинуса эти же числа идут в обратном порядке – от четверки до нуля. В таком виде таблицу запомнить проще.

Для вычисления тригонометрических ф-ций углов, не попадающих в диапазон 0 ⩽ α < 2π их надо привести к этому самому диапазону. Напомним, что для этого можно просто добавить к углу несколько полных оборотов, или отнять их.

 

Задание. Вычислите cos 7π/3.

Решение. Угол 7π/3 равен углу π/3:

7π/3 = 6π/3 + π/3 = 2π + π/3 = π/3

Значит, и косинус у угла 7π/3 будет равен косинусу угла π/3:

cos 7π/3 = cosπ/3 = 1/2

Ответ: 1/2.

График синуса и косинуса

Заметим, что координаты точек, лежащей на единичной окружности, варьируются в пределах от – 1 до 1. Это означает, что значение синуса и косинуса также может находиться только в интервале между этими числами. Получается, что область значения этих ф-ций – это промежуток [– 1; 1].

Вычислить синус и косинус можно для абсолютно любого угла поворота, поэтому область определения этих тригонометрических ф-ций – вся числовая прямая, то есть промежуток (– ∞; + ∞).

Изучение графиков тригонометрических функций начнем с синуса. В тригонометрии при построении графика синуса принято по оси Ох откладывать значение угла в радианах, а не в градусах. Из-за этого в школьной тетради тяжело точно отметить точки, через которые проходит этот график. Например, возьмем угол, равный 90°. Его величина в радианах π/2, а sinπ/2 = 1. Получается, график должен пройти через точку (π/2; 1). Однако число π/2 – иррациональное, равное примерно 1,5708…, и точно отложить отрезок длиной π/2 невозможно.

Поэтому в учебных целях график строят приближенно (естественно, что на практике точный график можно построить с помощью компьютера с любой требуемой точностью). Считают, что величина π/2 примерно равна 1,5, то есть дроби 3/2. Если выбрать масштаб, при котором единице равны 2 клеточки, то π/2 – это 3 клеточки. Тогда π/6 – это одна клеточка, а π/3 – две.

Мы знаем, что

sin 0 = 0

sin π/6 = 1/2

sin π/2 = 1

Значит, график синуса должен проходить через точки (0; 0), (π/6; 1/2) и (π/2; 1). Отметим их на координатной плоскости:

19hgfgh

С помощью некоторых соображений симметрии можно вычислить ещё несколько точек в диапазоне от 0 до 2π. Не будем перечислять их координаты, а просто отметим их на рисунке:

20hgh

Теперь соединим их плавной кривой:

21gfdg

Мы получили график синуса на промежутке от 0 до 2π. Но ведь мы можем вычислить синус для любого другого угла! При этом мы используем тот факт, что углам, отличающимся на 2π (на один полный оборот), на единичной окружности соответствует одинаковая точка. То есть этим двум углам будут соответствовать точки на графике с одинаковой ординатой (координатой у), но абсциссами, отличающимися на 2π. Другими словами, точку графика можно перенести на 2π (то есть 12 клеточек) влево или вправо:

22gfdg

Перенести можно не одну точку, а сразу всё множество точек, лежащих между 0 и 2π:

23ghgfh

Получили ещё два участка графика, на промежутках [– 2π; 0] и [2π; 4π]. Эти участки также можно переместить влево и вправо. Продолжая этот процесс бесконечно, мы получим весь график у = sinx:

24gfdg

В результате мы получили кривую, которую называют синусоидой.

Теперь построим график косинуса. Мы знаем что

cos 0 = 1

cos π/3 = 1/2

cos π/2 = 1

Получается, что график должен проходить через точки (0;1), (π/3; 1/2) и (π/2; 0). Отметим их на плоскости:

25ghgh

Можно вычислить, используя симметрию на единичной окружности, ещё несколько точек, которые должны лежать на графике. Не приводя этих вычислений, просто отметим эти точки на плоскости:

26hgfh

Соединяем эти точки плавной линией:

27hgfj

Как и в случае с синусом, участок графика косинуса можно перенести на 2π (12 клеточек влево и вправо). В результате таких действий получим окончательный вид ф-ции у = cosх:

28hfgh

Можно заметить несколько особенностей полученных графиков. Во-первых, все точки обоих графиков лежат в «полосе» между прямыми у = 1 и у = – 1. Это следствие того, что и у синуса, и у косинуса область значений – это промежуток [– 1; 1]:

29hgfgh

Во-вторых, график косинуса очень похож на синусоиду. Он имеет такую же форму, но просто смещен на π/2 (3 клеточки) влево. Это не случайно, в будущих уроках мы узнаем причину этого явления. Но, так как график косинуса – это просто смещенная синусоида, то термин «косинусоида» для его обозначения почти не используется – он просто избыточен.

30gfdg

В-третьих, графики обладают периодичностью. Они «повторяются» с периодом 2π. Дело в том, что углам, отличающимся друг от друга на 2π (то есть ровно на один полный поворот в 360°), на единичной окружности соответствует одна и та же точка. То есть справедливы формулы:

sin (x+ 2π) = sinx

cos (x+ 2π) = sinx

31gfdg

32gjhj

В-четвертых, можно заметить, что график косинуса симметричен относительно оси Ох, а график синуса симметричен относительно начала координат. Это значит, что синус является нечетной функцией, а косинус – четной функцией. Напомним, что ф-ция f(x) является нечетной, если справедливо условие

f(x) = – f(– x)

Если f(x) – четная ф-ция, то должно выполняться условие:

f(x) = f(– x)

Действительно, если отложить на единичной окружности углы α и (– α), то можно заметить, что их косинусы будут равны друг другу, и синусы окажутся противоположными:

33hgfgh

34bgj

Поэтому верны формулы:

sin (– α) = – sinα

cos (– α) = cosα

35hgfgh

 

Тангенс угла

Синус и косинус являются основными, или, как говорят математики, прямыми тригонометрическими ф-циями. Однако есть ещё две производных тригонометрических ф-ций – тангенс и котангенс. Напомним, что тангенс угла в прямоугольном треугол-ке – это отношение противолежащего катета к прилежащему. Однако в тригонометрии куда удобнее пользоваться другим его определением. Тангенс – это отношение синуса угла к его косинусу:

36hgfh

37hgfh

Для получения тангенса на единичной окружности необходимо продолжить прямую, образующую угол α, до её пересечения с прямой х = 1. Точка их пересечения будет иметь координаты (1; tgα):

38jhgj

Заметим, что если α относится ко второй четверти, то тангенс получится отрицательным. Действительно, с одной стороны, соответствующая прямая пересечет линию х = 1 в точке, лежащей ниже оси Ох:

39jhghj

С другой стороны, мы знаем, что во второй четверти синус положителен, а косинус – отрицателен. Тогда их отношение, то есть тангенс, должно быть отрицательным:

40sdfds

Очевидно, что тангенс должен быть периодической ф-цией. Однако его период вдвое меньше 2π и составляет π. Действительно, углы, отличающиеся на π, будут иметь одинаковое значение тангенса, что видно из построения:

41gfd

Это значит, что справедлива формула:

tg(α + π) = tg α

42gfdgh

С другой стороны, это означает, что тангенсы углов из III четверти положительны, ведь они равны тангенсам углов из I четверти. Аналогично можно утверждать, что тангенсы углов из IV четверти отрицательны:

43gfdh

Также тангенс является нечетной ф-цией. Чтобы убедиться в этом, найдем с помощью единичной окружности tgα и tg (– α):

44hgfh

Из построения видно, что tg (– α) = tgα, поэтому тангенс попадает под определение нечетной ф-ции.

45hgfgj

Доказать этот факт можно и иначе. Вспомним, что синус – это нечетная ф-ция, а косинус – четная. Тогда, используя определение тангенса, можно записать:

46gfdh

Для вычисления тангенса проще всего использовать его определение. Мы знаем синусы и косинусы стандартных углов, а потому, деля их друг на друга, сможем найти и тангенсы стандартных углов:

47hgfh

Ещё раз отметим, что важнее всего запомнить значения синусов и косинусов стандартных углов. Зная их, школьник всегда сможет самостоятельно вычислить тангенс.

Можно ли вычислить тангенс для угла π/2, то есть для 90°? Сделать это не получится, ведь cosπ/2 равен нулю. Если подставить cosπ/2 в формулу для вычисления тангенса, то получится деление на ноль! Так как тангенс – периодическая ф-ция, то его нельзя вычислить и в тех точках, которые отличаются от π/2 на целое число π.

48hgfh

В частности, тангенс не определен при х = – π/2.

 

График тангенса

Так как тангенс обладает периодом, равным π, достаточно построить его график на каком-нибудь промежутке длиной π. Далее его можно будет просто перенести на π единиц влево и вправо. Удобно выбрать промежуток от – π/2 до π/2. Дело в том, что на нем она определена во всех точках, кроме его концов.

Через точки х = – π/2 и х = π/2 проведем штриховые линии – они означают, что график НЕ должен пересекать их. Ясно, что график проходит через точку (0; 0), ведь tg 0 = 0. Тангенс представляет собой дробьsinx/cosx. При увеличении х от 0 до π/2 знаменатель возрастает, а числитель убывает, стремясь к нулю. Поэтому вся дробь неограниченно растет, и график тангенса возрастает до бесконечности:

49jhgj

Так как мы строим график нечетной ф-ции, то мы можем полученную ветвь отобразить симметрично относительно начала координат:

50hgfgh

Полученный график называют тангенсоидой. Осталось воспользоваться тем, что мы рассматриваем периодическую ф-цию с периодом π, и перенести тангенсоиду влево и вправо:

51gfdg

 

Котангенс угла

Помимо тангенса в тригонометрии выделяют ещё одну производную ф-цию – котангенс. Он представляет отношение косинуса к синусу:

52gfdg

53gfdg

Видно, что определение котангенса очень похоже определение тангенса. В принципе, удобней использовать несколько другую формулу:

54gfg

Почти во всех задачах с помощью формулы

55hgfh

можно избавиться от котангенса, заменив его дробью 1/tgα. Поэтому мы вкратце расскажем об основных особенностях котангенса, ведь он очень редко используется на практике.

Значения этой ф-ции рассчитываются так:

56gdh

При х = 0 значение котангенса не определено, так как в этой точке косинус становится равным нулю, а деление на ноль невозможно.

График котангенса – это тангенсоида, которая отображена симметрично относительно оси Ох и смещена на π/2:

57fgh

Можно заметить, что вертикальные штриховые линии (асимптоты) графика проходят через точки, кратные π: –2π, – π, 0, π, 2π… Они разбивают координатную прямую на интервалы (– 2π; – π), (– π; 0), (0; π), (π; 2π), на каждом из которых ф-ция у = ctgx убывает. Видно, что котангенс – это периодическая ф-ция с периодом π.

Для сравнения покажем на одной плоскости графики тангенса и котангенса:

58hgfh

Котангенс, как и тангенс – нечетная ф-ция, то есть

ctg (– x) = – ctgx

Теперь у нас есть представление об основных тригонометрических ф-циях. Важнейшими из них являются синус и косинус. Тангенс является производной ф-цией от них и рассчитывается как отношение синуса к косинусу. Редко используемый котангенс, наоборот, представляет собой отношение косинуса к синусу.

Впервые элементы тригонометрии стали использовать ещё древние греки, которые производили с их помощью астрономические расчеты. В XVIII веке Эйлер сформулировал определения тригонометрических функций с помощью единичной окружности, благодаря которым стало возможным вычислять их значение для любых углов. Изначально тригонометрия использовалась для географических расчетов и навигации, однако со временем область ее применения расширилась. Оказалось, что без неё не обойтись в анализе финансовых рынков и биологических процессов, архитектуре, акустике и оптике, теории вероятностей.

 

 

ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
В каких четвертях синус принимает положительные значения?
1I и II четверть
2I и III четверть
3I и IV четверть
4II и III четверть
Ответить
4
Вопрос: 2
Значение какой из этих функций может быть больше единицы?
1Никакой
2Тангенс
3Синус
4Косинус
Ответить
2
Вопрос: 3
Период каких функций равен π?
1Тангенс и котангенс
2Синус и косинус
3Синус и тангенс
4Косинус и котангенс
Ответить
1
Вопрос: 4
Какая тригонометрическая функция является четной?
1Тангенс
2Котангенс
3Косинус
4Синус
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

В каких четвертях синус принимает положительные значения?
1) I и II четверть 2) I и III четверть 3) I и IV четверть 4) II и III четверть
2 вопрос:

Значение какой из этих функций может быть больше единицы?
1) Никакой 2) Тангенс 3) Синус 4) Косинус
3 вопрос:

Период каких функций равен π?
1) Тангенс и котангенс 2) Синус и косинус 3) Синус и тангенс 4) Косинус и котангенс
4 вопрос:

Какая тригонометрическая функция является четной?
1) Тангенс 2) Котангенс 3) Косинус 4) Синус
Посмотреть ответы
Правильные ответы:
1 вопрос: II и III четверть
2 вопрос: Тангенс
3 вопрос: Тангенс и котангенс
4 вопрос: Косинус
slide16

Подготовься к ЕГЭ          на 100 баллов

Перейти
slide19

Пройди ускоренный курс
подготовки к ЕГЭ с репетитором

Перейти
slmob12

На ЕГЭ во всеоружии

Перейти
slmob13

Узнай, как сдать ЕГЭ на 100 баллов

Перейти
slide19

Ускоренный курс
подготовки к ЕГЭ

Перейти