Геометрия

Урок 5: Перпендикулярность

Перпендикулярность в пространстве

Мы уже сталкивались с перпендикулярными прямыми в планиметрии. В стереометрии это понятие расширяется.

План урока:

Перпендикулярность прямых

Перпендикулярность прямой и плоскости

Признак перпендикулярности прямой и плоскости

Задачи на перпендикулярность

 

Перпендикулярность прямых

Напомним, что планиметрии две прямые перпендикулярны, если угол между ними – прямой (то есть его величина составляет 90°).

1 perpendikulyarnost

Однако в стереометрии угол измеряется и между скрещивающимися двумя прямыми в пространстве, у которых общих точек нет. Если он составляет 90°, то прямые также именуются перпендикулярными.

2 perpendikulyarnost

Как же проверить, перпендикулярны ли скрещивающиеся прямые или нет? Для этого может быть использована специальная теорема, которую можно считать признаком перпендикулярности прямых.

3 perpendikulyarnost

Действительно, пусть есть прямые m, n и p, причем р||n и m⊥n. Требуется показать, что также m⊥p. Для этого выберем в пространстве какую-нибудь точку К и проведем через нее две такие прямые m’ и n’, что m’||m и n’||n:

4 perpendikulyarnost

По определению угла между прямыми из того факта, что m⊥n, вытекает, что и m’⊥n’. Так как p||n и n||n’, то в силу транзитивности параллельности, можно сделать вывод, что и р||n’. Но тогда угол между m’ и n’ одновременно является углом между m и p. А разm’⊥n’, то и m⊥p, ч. т. д.

Проиллюстрируем это правило на примере простого кубика:

5 perpendikulyarnost

Ребра ВС и AD параллельны как стороны квадрата АВСD. В свою очередь ВС⊥СG. Тогда по доказанной теореме можно утверждать, что и AD⊥CG.

 

Перпендикулярность прямой и плоскости

Из реальной жизни мы знаем, что палку в землю можно вставить так, что она будет стоять строго вертикально. В таких случаях говорят, что палка располагается перпендикулярно земле. Также гвоздь, «ровно» забитый в стену, оказывается перпендикулярным стене. Колонны, которые архитекторы используют при строительстве, также перпендикулярны плоскости пола в этих зданиях.

6 perpendikulyarnost

По аналогии и в геометрии прямая может быть перпендикулярна плоскости. На рисунке такая ситуация будет выглядеть так:

7 perpendikulyarnost

Сформулируем строгое определение:

8 perpendikulyarnost

Так, на следующем рисунке перпендикулярны прямая m и плоскость α. Это значит, что m перпендикулярна каждой прямым, находящимся в α:

9 perpendikulyarnost

Ясно, что прямая m, перпендикулярная плоскости α, должна пересекать ее. Действительно, если бы это было не так, то m либо полностью лежала бы в α, либо была бы ей параллельна. В обоих случаях в α можно было бы построить прямую n, параллельную m. В этом случае m и n уже не были бы перпендикулярны, а значит, что m уже не будет перпендикулярна к α.

Сформулируем две теоремы, связанные с перпендикулярностью прямой и плоскости.

10 perpendikulyarnost

Действительно, пусть есть прямые m и n, и m||n. Также есть плоскость α, и α⊥m. Проведем в α какую-нибудь прямую р:

11 perpendikulyarnost

По определению перпендикулярности (опр. 2) ясно, что m⊥p. Тогда по теор. 1 и n⊥p, ведь m||n. Прямая р была выбрана произвольно, поэтому получается, что n перпендикулярно любой произвольной прямой в α. Это как раз и значит, что n⊥α.

Теперь перейдем ко второй теореме, которая по сути обратна первой:

12 perpendikulyarnost

Для доказательства выберем на n точку К, не находящуюся в плоскости α. Через нее можно построить прямую р, параллельную m. Нам надо показать, что р и n – это одна и та же прямая. Пусть это не так, тогда р будет перпендикулярна α по теор. 2. Если n и р – различные прямые, то они должны пересекать α в разных точках, которые мы обозначим буквами Н и Т соответственно:

13 perpendikulyarnost

Прямая ТН будет перпендикулярна и n, и р. Тогда в ∆ТНК есть два прямых угла, ∠Н и∠Т, что невозможно. Значит, на самом деле прямые n и p совпадают. Так как p||m, то и n||m, ч. т. д.

 

Признак перпендикулярности прямой и плоскости

Заметим,что проверять перпендикулярность прямой и плоскости с помощью определения неудобно, ведь в любой плоскости находится бесконечно большое количество прямых. Поэтому на практике используется более простой признак перпендикулярности прямой и плоскости:

14 perpendikulyarnost

Доказательство. Пусть есть прямые m, n и р, причем m⊥n и m⊥p. При этом n и р пересекаются в какой-нибудь точке О, и через них проходит плоскость α.Надо продемонстрировать, что m также будет перпендикулярна и любой произвольной прямой k, принадлежащей α:

15 perpendikulyarnost

Если k||nили k||р, то k⊥m по теор. 1. Тогда надо рассмотреть случай, когда k пересекается с n и р. Проведем через О прямую k’, параллельную k.

Далее на прямой m отложим точки А и В так, чтобы ОА = АВ. Также проведем прямую s, пересекающую р, n, k’ в точках Р, L и Q соответственно:

16 perpendikulyarnost

В результате такого построения прямые n и р оказались серединными перпендикулярами для отрезка АВ. Тогда по свойству серединного перпендикуляра мы можем прийти к выводу, что

17 perpendikulyarnost

Теперь мы можем сравнить ∆АРQ и ∆BPQ, которые также оказываются равными:

18 perpendikulyarnost

Отсюда вытекает, что отрезки АQ и BQ одинаковы, поэтому ∆АВQ – равнобедренный. Теперь заметим, что в ∆АВQ отрезок OQ представляет собой медиану, ведь О – середина АВ. Но медиана в равнобедренном треугольнике – это ещё и высота, поэтому АВ⊥OQ. Это как раз и значит, что k’⊥m. Наконец, отсюда по теор. 1 выходит, что и k⊥m, ч. т. д.

Надо также рассмотреть и второй случай, когда изначально m НЕ проходит через О. В таком случае мы можем провести через О прямую m’, чтобы m’||m:

19 perpendikulyarnost

В этом случае по аналогии с предыдущим доказательством получаем, что m’⊥k. Тогда по теор. 1 и m⊥k, ч. т. д.

Покажем, как можно применить доказанный признак. Снова рассмотрим куб:

20 perpendikulyarnost

Докажем, что, например, ребро DH перпендикулярно грани АВСD. Действительно,DH⊥AD и DH⊥CD. Значит, в плоскости АВСD есть две пересекающиеся прямые (это AD и CD), каждая из которых перпендикулярна DH. По доказанному признаку (теор. 4) этого достаточно для того, чтобы DH⊥ABCD. Аналогично можно показать, что ребра BF, AE, СG также перпендикулярны АВСD.

Докажем ещё несколько важных и вместе с тем очевидных теорем.

21 perpendikulyarnost

Действительно, пусть есть прямая m и точка K. Здесь мы рассмотрим случай, когда K не находится на m. Тогда через m и K можно построить единственную плоскость α:

22 perpendikulyarnost

Дальше выполним следующие построения:

1) Проведем в плоскости α через К прямую n, такую, что n⊥m. Она пересечет m в какой-то точке Т.

2) Построим через m плоскость β, не совпадающую с α. То есть m окажется границей между α и β.

3) Через точку Т уже в плоскости β построим прямую р так, чтобы р⊥m.

4) Построим плоскость γ, проходящую пересекающиеся прямые р и n (эта плоскость будет единственной).

В итоге мы получили плоскость γ, в которой располагаются две прямые, р и n, каждая из которых перпендикулярна m. Тогда и вся плоскость γ будет перпендикулярна прямой m по теор. 4. То есть γ удовлетворяет условию теоремы.

В случае, когда точка К находится непосредственно на прямой m, плоскости α и β будут просто двумя различными плоскостями, проходящими через m. В каждой из них через К можно будет построить перпендикуляры к m, которые и будут играть роль прямых pи n.

Осталось убедиться, что γ – единственная плоскость, удовлетворяющая условию теоремы. В самом деле, пусть через некоторую точку К можно построить хотя бы две несовпадающие плоскости, перпендикулярные прямой m:

23 perpendikulyarnost

Обозначим буквами Т и Р точки, где m пересекает эти две плоскости. Тогда по опр. 2 получится, что РК⊥m и KT⊥m. Теперь рассмотрим ∆KPT. У него сразу два прямых угла – это ∠Р и ∠Т. Треугольник с двумя прямыми углами существовать не может, значит, на самом деле через K нельзя провести две плоскости, перпендикулярных m.

Прямым следствием из только что доказанной теоремы является следующее утверждение:

24 perpendikulyarnost

Действительно, пусть существуют такие плоскости α и β и прямая m, что m⊥α, m⊥β. Предположим, что α и β пересекаются по какой-нибудь прямой n. Тогда получается, что через каждую точку, принадлежащую n, проведены сразу 2 плоскости, перпендикулярные m, а это невозможно по теор. 5. Значит, α и β не пересекаются, то есть они параллельны.

Следующее утверждение часто называют теоремой о прямой, перпендикулярной плоскости:

25 perpendikulyarnost

Возьмем произвольные плоскость α и точку К. Далее в α выберем какую-нибудь прямую m. Мы можем провести через К такую плоскость β, что β⊥m (по теор. 5):

26 perpendikulyarnost

Прямую, по которой пересекутся α и β, обозначим буквой n. Теперь мы можем в плоскости β опустить перпендикуляр из К на n. Этот перпендикуляр обозначим буквой р.

Получается, что р⊥n,но также и р⊥m (ведь m⊥β, а р находится в β). Тогда по признаку перпендикулярности (теор. 4) получаем, что р⊥α, то есть р – это как раз искомая прямая.

Осталось показать, что р – единственная такая прямая. Действительно, пусть через К построили две прямых, каждая из которых перпендикулярна α. Тогда, по теореме 3, они окажутся параллельными. Но при этом у них будет общая точка K, а параллельные прямые общих точек не имеют. Поэтому р – единственная прямая, удовлетворяющая условию теоремы.

 

Задачи на перпендикулярность

Прежде, чем смотреть решение задач, постарайтесь решить их самостоятельно.

 

Задание. Ребра ВС и AD в тетраэдре АВСD перпендикулярны. M и N – это середины ребер АВ и АС. Докажите, что MNAD.

27 perpendikulyarnost

Решение.MN по определению оказывается средней линией в ∆АВС. Это значит, что MN||ВС. Тогда, по теор. 1, можно утверждать, что и АD⊥MN, ч. т. д.

 

Задание. Диагонали квадрата, чья сторона имеет длина а, пересекаются в точке О. Через О проведена прямая ОК, перпендикулярная плоскости квадрата, причем отрезок ОК имеет длину b. Найдите расстояние от какой-нибудь вершины квадрата до точки К.

Решение.

28 perpendikulyarnost

Обозначим вершины квадрата буквами А, В, С и D. Найдем длину его диагонали, например, АС. Для этого используем теорему Пифагору и прямоугольный ∆АСD:

29 perpendikulyarnost

Точка пересечения диагоналей квадрата одновременно является серединой каждой диагонали, то есть отрезок ОС вдвое короче АС:

30 perpendikulyarnost

Теперь заметим, что если ОК перпендикулярна плоскости квадрата, то также ОК⊥ОС (опр. 2). Значит, ∆КОС – прямоугольный, и для него справедлива теорема Пифагора:

31 perpendikulyarnost

Аналогично можно показать, что расстояние и до других вершин вычисляется по такой же формуле.

32 perpendikulyarnost

 

Задание. В кубе найдите угол между прямыми АС и DH:

33 perpendikulyarnost

Решение. Заметим, что DH⊥АD и DH⊥CD, при этом AD и CD находятся в плоскости грани АВСD. Тогда по теор. 4 получаем, что DH перпендикулярна этой грани. В свою очередь из опр. 2 вытекает, что DH перпендикулярна любой прямой, принадлежащей грани, в том числе и АС. То есть угол между этими прямыми составляет 90°.

Ответ: 90°.

 

Задание. Ребро куба имеет длину, равную единице. Какова длина его диагонали FD?

34 perpendikulyarnost

Решение. Предварительно найдем длину диагонали FC (эта диагональ называется не диагональю куба, а диагональю грани ВСGF). Ее можно найти из прямоугольного ∆FCG:

35 perpendikulyarnost

Далее заметим, что СD⊥BC и CD⊥CG, то есть по теор. 4 ребро CD перпендикулярно всей грани BCGF. Это значит, что и ∠FCD– прямой, а ∆FCD – прямоугольный. Применим и к нему теорему Пифагора:

36 perpendikulyarnost

 

Задание. Какой угол в кубе с единичным ребром образуют диагональ куба и его ребро?

37 perpendikulyarnost

Решение. Используем рисунок предыдущей задачи и полученные в ней результаты. Нам надо найти ∠FDC. Мы уже рассчитали длины всех сторон в ∆FDC:

38 perpendikulyarnost

Тогда ∠FDC легко найти с помощью теоремы косинусов:

39 perpendikulyarnost

Примечание. Несложно показать, что ровно такой же угол диагональ куба образует и со всеми остальными ребрами куба. Также можно показать, что это угол никак не зависит от длины ребра.

 

Задание. Отрезок PQ и плоскость α параллельны. Через точку P и Q построены прямые, перпендикулярные α. Они пересекают α в точках Р1 и Q1. Докажите, что отрезки PQ и P1Q1 одинаковы.

40 perpendikulyarnost

Решение. По условию РР1⊥α и QQ1⊥α. Тогда по теор. 3 можно утверждать, что РР1||QQ1. Это значит, что отрезки РР1 и QQ1, в том числе и точки Р, Р1, Q, Qрасполагаются в одной плоскости. Тогда РQQ1P1– это плоский четырехугольник.

Заметим, что PQ||P1Q1, ведь если бы они пересекались, то точка их пересечения была бы общей для PQ и α, и тогда PQ и α не были бы параллельны. С учетом того факта, что и РР1||QQ1, получаем, что в четырехугольнике РQQ1P1 противоположные стороны параллельны. То есть он представляет собой параллелограмм.

Так как РР1⊥α и QQ1⊥α, то

41 perpendikulyarnost

Получается, что все углы в РQQ1P1 – прямые, то есть это прямоугольник. Из этого вытекает, что PQиP1Q1 – одинаковые отрезки, ч. т. д. Попутно мы также убедились, что также РР1 и QQодинаковы.

 

Задание. Есть плоскости α и β, параллельные друг другу. Прямая m перпендикулярна α. Верно ли, что также m перпендикулярна и β?

Решение.

42 perpendikulyarnost

Пусть α и m пересекаются в точке Р. Заметим, что m обязательно должна пересекаться и с β в какой-нибудь точке М. Действительно, m не может полностью принадлежать β, ведь тогда бы точка Р также находилась в β, то есть существовала бы общая точка Р у параллельных плоскостей, что невозможно. Если бы m и β были параллельны, то тогда в β можно провести такую прямую m’, что m’||m. Раз m пересекает α, то и m’ должна пересекаться с α (по теор. 3 из этого урока). Но m’ с α не может пересечься, так как m’ находится в β и потому общих точек с α не имеет. Это противоречие показывает, что m пересекает β в точке, обозначенной нами как М.

Предположим, что утверждение в условии ошибочно и на самом деле β и m не перпендикулярны. Тогда через М можно провести третью плоскость γ, перпендикулярную m (по теор. 5). Проанализируем расположение плоскостей α, β и γ. Раз α⊥m и γ⊥m, то по теор. 6 можно утверждать, что α||γ. По условию α||β. Тогда в силу транзитивности параллельности и β||γ. Но это невозможно, ведь уβ и γ есть общая точка М. Значит, на самом деле β и m всё же перпендикулярны, ч. т. д.

 

Задание. Прямые AD, АС, АВ попарно параллельны. Известно, что

BC = 26

AB = 24

BD = 25

Найдите длину отрезка CD.

43 perpendikulyarnost

Решение. В задаче есть сразу три прямоугольных треугольника: ∆АВС, ∆АВD и ∆АСD. Для каждого из них можно записать теорему Пифагора, что позволит найти длины отрезков АС, АD и СD. Начнем с ∆АВС:

44 perpendikulyarnost

Теперь можно найти и длину CD c помощью ∆АСD:

45 perpendikulyarnost

 

Задание. На прямой m отмечена точка М. Через точку M проведены плоскость α и прямая n, причем mα и mn. Докажите, что n обязательно принадлежит α.

Решение. Так как m и n пересекаются, то через них можно построить плоскость β:

46 perpendikulyarnost

Так как у α и β есть общая точка М, то они должны пересекаться по некоторой прямой р. При этом р находится в α, а m⊥α, то m⊥n (по опр. 2). Тогда получается, что в плоскости β через точку M проходят две прямые, n и p, которые перпендикулярны m. Но в одной плоскости через точку прямой можно построить строго один перпендикуляр к ней. То есть n и p совпадают. Это значит, что n, как и p, полностью находится в α, ч. т. д.

 

Задание. Отрезок АВ не пересекает плоскость α, а отрезок СD принадлежит α. Известно, что отрезки АС и BD перпендикулярны α. Также известны длины:

AC = 3

BD = 2

CD = 2,4

Какова длина АВ?

Решение.

47 perpendikulyarnost

Если АС⊥α и BD⊥α, то АС||BD (по теор. 3). Это значит, что через АВ и СD можно провести плоскость, то есть АВСD – плоский четырехугольник. При этом∠С и ∠D прямые (по опр. 2). Построим отдельно этот четырехугольник и проведем некоторые построения:

48 perpendikulyarnost

Опустим из В перпендикуляр ВК на АС. Так как в четырехугольнике СDBK три угла прямые (∠С, ∠D и ∠K), то и четвертый угол также прямой, то есть СDBK – прямоугольник. Это значит, что

49 perpendikulyarnost

В ходе сегодняшнего урока мы узнали о перпендикулярных прямых в пространстве, а также о том, что перпендикулярны могут быть также прямая и плоскость. На основе простейших теорем о перпендикулярности возможно определять длину диагонали в кубе и углы, которые образует его диагональ с ребрами куба.

 

ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
α – плоскость, m и n прямые, m⊥α и n⊥α. В таком случае прямые m и n…
1Перпендикулярны
2Пересекаются
3Скрещиваются
4Параллельны
Ответить
4
Вопрос: 2
На прямой m отмечена точка K. Сколько прямых, перпендикулярных m, можно провести через K?
1Две
2Бесконечно много
3Одну
4Ни одной
Ответить
2
Вопрос: 3
Плоскости, перпендикулярные одной и той же прямой, будут…
1Параллельны друг другу
2Перпендикулярны друг другу
3Пересекаться
4Скрещиваться
Ответить
1
Вопрос: 4
m, n и р – прямые при этом m||n и m⊥p. Это значит, что р и n…
1Скрещиваться
2Параллельны
3Перпендикулярны
4Совпадают
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

α – плоскость, m и n прямые, m⊥α и n⊥α. В таком случае прямые m и n…
1) Перпендикулярны 2) Пересекаются 3) Скрещиваются 4) Параллельны
2 вопрос:

На прямой m отмечена точка K. Сколько прямых, перпендикулярных m, можно провести через K?
1) Две 2) Бесконечно много 3) Одну 4) Ни одной
3 вопрос:

Плоскости, перпендикулярные одной и той же прямой, будут…
1) Параллельны друг другу 2) Перпендикулярны друг другу 3) Пересекаться 4) Скрещиваться
4 вопрос:

m, n и р – прямые при этом m||n и m⊥p. Это значит, что р и n…
1) Скрещиваться 2) Параллельны 3) Перпендикулярны 4) Совпадают
Посмотреть ответы
Правильные ответы:
1 вопрос: Параллельны
2 вопрос: Бесконечно много
3 вопрос: Параллельны друг другу
4 вопрос: Перпендикулярны