Геометрия

Урок 8: Движения

Движения

При решении ряда геометрических задач бывает удобно переносить и поворачивать некоторые элементы рисунка. Подобные действия в геометрии именуют движениями.
 

План урока:

Отображение плоскости на себя

Понятие движение в геометрии

Свойства движения

Параллельный перенос

Поворот

Использование движения в задачах

 

Отображение плоскости на себя

Пусть есть некоторое правило, которое устанавливает для каждой точки плоскости какую-нибудь точку этой же плоскости. Подобное правило именуют отображением плоскости на себя.

1 dvizheniya

Лучше всего пояснить это понятие на конкретных примерах. Так, уже изученная нами ранее осевая симметрия может считаться отображением плоскости на себя. Проведем на плоскости прямую m, которая сыграет роль оси симметрии. Далее отметим несколько произвольно выбранных точек А, В, С, D:

2 dvizheniya

Для каждой из отмеченных точек несложно определить точку, симметричную ей относительно оси симметрии. Чтобы сделать это, надо опустить из точек перпендикуляры АА’, ВВ’, СС’на прямую m, а потом на продолжении этих перпендикуляров отложить отрезки А’A’’, B’B’’, C’C’’ так, чтобы выполнялись равенства:

3 dvizheniya

Тогда точки А и А’’, В и В’’, С и С’’ будут симметричны относительно m. Можно сказать, что точки А, В и С отобразились соответственно в точки А’’, В’’, С’’:

4 dvizheniya

Обратите внимание на точку D, которая непосредственно лежит на m. Для нее не получится выполнить такое же построение, как для А, В и C, однако считается, что она симметрична сама себе. Поэтому можно сказать, что точка D преобразуется в точку D’’, которая совпадает с самой D. То есть точка отобразилась сама на себя.

Таким образом, любую точку можно отобразить симметрично относительно произвольной прямой m, и такое отображение как раз является примером отображения плоскости на себя.

В качестве ещё одного примера можно привести центральную симметрию. Отметим на плоскости произвольную точку О, которая будет центром симметрии, а также некоторые точки А, В, С. Отобразим их симметрично относительно О. Для этого надо просто построить прямые АО, ВО и СО, а потом от О отложить на этих прямых отрезки А’О, В’O, C’O:

5 dvizheniya

Можно сказать, что А, В и С отобразились в точки А’, В’ и C’. Если бы мы захотели отобразить с помощью центральной симметрии саму точку О, то она отобразилась бы сама в себя. Таким образом, центральная симметрия также представляет собой отображение плоскости на себя, так как с помощью описанного алгоритма можно найти отображение любой точки на плоскости.

Важно понимать, что бывают отображения плоскости, которые вовсе не являются симметриями. Например, снова возьмем точку О ещё три точки А, В, С. Снова построим прямые АО, ВО и СО, но теперь уже от самих точек А, В и С отложим отрезки, равные АО, ВО и СО, и обозначим их как АА’, ВВ’ и CС’:

6 dvizheniya

В результате наших действий мы снова каждой точке А, В, С поставили в соответствие точку А’, В’, С’. То есть имеет место отображение плоскости. Такое преобразование называется гомотетией (точнее говоря, это частный случай гомотетии), и оно симметрией не является.

Все три описанных примера отображений плоскости на себя объединяет то, что они содержат описание правила (алгоритма), по которому произвольной точке А может быть поставлена в соответствие какая-то произвольная точка А’. При этом точку А’ называют отображением, или образом точки А. В свою очередь А можно назвать прообразом точки А’. Ещё раз отметим, что допускается ситуация, когда точки А и А’ совпадают. Попробуйте сами придумать ещё несколько алгоритмов, которые представляют собой отображения плоскости.

Понятие движения в геометрии

Среди всех отображений плоскости в особую группу объединяют те преобразования, при которых не изменяется расстояние между отображаемыми точками. Эти отображения именуются движениями. Также используются термины перемещение и изометрия.

7 dvizheniya

Центральная и осевая симметрия– это как раз примеры движений. Докажем это для осевой симметрии. Рассмотрим две точки А и В, расположенные так, как это показано на рисунке, а также ось симметрии m. Отобразим А и В относительно mпо правилам осевой симметрии:

8 dvizheniya

Здесь Н и К – это точки прямой m, на которые упали перпендикуляры, опущенные из А и В. Проведем отрезки НВ и НВ’. Теперь исследуем ∆KBH и ∆KB’H. Они оба являются прямоугольными, у них один катет общий (HK), а вторые катеты равны по свойству осевой симметрии. Из этого вытекает равенство ∆KBH и ∆KB’H, а это значит, что

9 dvizheniya

Далее рассмотрим ∆АВН и ∆А’B’H. Только что мы выяснили, что у них есть одинаковые углы ∠BHA и ∠B’HA’. Прилегающие к ним стороны также одинаковы:

10 dvizheniya

Надо отметить, что приведенное доказательство не является полным, так как рассматривает один случай расположения точек А и В. Возможны ещё как минимум 6 случаев расположения А и В:

11 dvizheniya

В рамках полного доказательства следовало бы полностью рассмотреть каждый из этих случаев и для каждого из них доказать равенство

12 dvizheniya

но мы не будем тратить на это время, можете попробовать самостоятельно сделать это.

Далее проанализируем центральную симметрию, она также представляет собой движения. Отобразим точки А и В в образы А’и В’ относительного произвольного центра симметрии О:

13 dvizheniya

Сравним ∆АОВ и А’OB’. У них одинаковы∠АОВ и ∠А’ОВ’, так как они – вертикальные. По свойству центральной симметрии можно записать, что

14 dvizheniya

Надо понимать, что не всякое отображение плоскости представляет собой движение. Например, рассмотренная нами гомотетия изменяет расстояния между точками, а потому она не относится к движениям.

 

Свойства движения

При движении, как и при любом отображении, можно отображать не только отдельные точки, но и их множества, то есть геометрические фигуры. Сформулируем важную теорему:

15 dvizheniya

Действительно, пусть есть отрезок MN, все точки которого мы отобразили с помощью движения. Произвольную точку отрезка MN обозначим как Р. После отображения мы получим точки M’, N’ и Р’. Соединим М’ и N’ и получим отрезок M’N’.Докажем, что Р’ принадлежать отрезку M’N’.

16 dvizheniya

Р лежит на NP, поэтому справедливо равенство:

17 dvizheniya

Заметим, что это равенство как раз может выполняться только в случае, если Р’ принадлежит M’N’. Действительно, если Р’ не лежит на M’N’, то существует ∆M’N’P’, для которого, в силу неравенства треугольника, можно записать

18 dvizheniya

Итак, мы показали, что всякая точка Р исходного отрезка MN обязательно будет отображаться на отрезок M’N’. Однако этого мало. Вдруг на M’N’ есть такая точка Р’, что ее прообраз не лежит на исходном отрезке MN?Для того, чтобы опровергнуть такую возможность, надо рассуждать в «обратную сторону». Для Р’, лежащей на M’N’, выполняется равенство

19 dvizheniya

Такое равенство означает, что Р лежит на MN. В итоге мы смогли показать, что отрезок MN отображается именно в отрезок M’N’.

Доказанное нами свойство позволяет доказать следующий факт:

20 dvizheniya

В результате отрезки АВ, АС, и ВС отобразятся в равные им отрезки А’B’, А’С’ и B’C’. Но тогда ∆АВС и ∆А’В’С’ будут равны, ведь у них одинаковы все 3 стороны, ч. т. д.

Из этого факта легко показать, что при движении остаются неизменными не только расстояния, но и углы. Пусть есть некоторый ∠А. Отметим на его сторонах точки В и C, в результате получим ∆АВС (если только ∠А не является развернутым). При движении ∆АВС отобразится в равный ему ∆А’В’С’. Из равенства треугольников вытекает и равенство углов:

21 dvizheniya

ч. т. д.

Аналогичными рассуждениями можно продемонстрировать, что вообще любая фигура, изученная нами в курсе геометрии (прямая, луч, многоугольник, окружность) будет отображаться в равную ей фигуру.

22 dvizheniya

Более того, если между двумя фигурами есть некоторая взаимосвязь, то она сохраняется после движения. Например, при движении две параллельные прямые отображаются в две другие параллельные прямые, и расстояние между ними не меняется. Если движению подвергают окружность и прямую, являющуюся касательной к ней, то в результате получают новую окружность и прямую, причем прямая останется касательной к окружности.

Параллельный перенос

Мы уже изучили два вида движения – осевую и центральную симметрию. Однако есть ещё несколько видов движений. Один из них именуется параллельным переносом. Для выполнения параллельного переноса необходимо предварительно задать некоторый вектор а. При параллельном переносе точки М она отображается в точку M’ так, что вектор MM’ оказывается равным а. Переносить можно сразу множество точек.

23 dvizheniya

Докажем, что параллельный перенос действительно представляет собой движение. Для этого надо всего лишь продемонстрировать, что при нем расстояние между двумя произвольными точками не меняется. Пусть в результате параллельного переноса на вектор а некоторые точки M и N отобразились в M’ и N’ соответственно:

24 dvizheniya

Рассмотрим получившийся четырехугольник NMM’N’. Две его стороны, MM’ и NN’, параллельны и имеют одинаковую длину, так являются равными векторами. Это значит, что NMM’N’ – это параллелограмм (согласно одному из признаков параллелограмма). Но тогда и две другие стороны NMM’N’, то есть MN и M’N’, также одинаковы, ч. т. д.

Примечание. Возможен частный случай, когда отрезок MN параллелен вектору а. В этом частном случае построить параллелограмм не удастся, но вы можете убедиться самостоятельно, что и в этом случае расстояние между M и N не изменяется.

Параллельный перенос может быть использован при решении ряда задач, в том числе и связанных с построением.

 

Задание. Даны две непересекающиеся окружности с различными радиусами. Постройте общие внешние касательные к этим окружностям.

25 dvizheniya

Решение. Предположим, что нам удалось построить обе внешние касательные. Обозначим точки касания как К, Р, M и N:

26 dvizheniya

Теперь осуществим параллельный перенос касательных. Касательную КР перенесем на вектор КО1, а MN – на вектор MО1. В результате точки K и M отобразятся в О1, а точки Р и N – в точки Р’ и N’:

27 dvizheniya

Так как при движении углы сохраняются, то прямые О1Р’ и О2N’ останутся перпендикулярными радиусам О2Р и О2N. Значит, если построить окружность с радиусом О2Р’ (а его величина равна R – r), то для нее эти прямые останутся касательными. Отсюда легко понять алгоритм построения внешних касательных. Сначала надо построить отрезок длиной R– r (на рисунке показан зеленым цветом):

28 dvizheniya

Далее из О2 проводим окружность с радиусом R– r:

29 dvizheniya

Теперь из точки О1 проводим касательные к новой окружности. Построение таких касательных – отдельная геометрическая задача, изучаемая ещё в 8 классе. В результате мы сможем найти точки касания Р’ и N’:

30 dvizheniya

Далее надо найти осуществить параллельный перенос касательных. Для этого продолжаем радиусы О2Р’ и О2N’, пока они не пересекутся с большей окружностью в точках Р и N соответственно. Чтобы найти точки касания меньшей окружности, надо просто провести перпендикуляры к касательным:

31 dvizheniya

Поворот

Ещё одно движение, используемое в планиметрии – это поворот. Для того, чтобы его совершить, необходимо указать центр поворота и выбрать угол поворота, а также задать направление вращение. На следующем рисунке показан поворот точки М относительно О на угол 45° по часовой стрелке:

32 dvizheniya

В общем случае поворот относительно точки О на некоторый угол α– это такое отображение, при котором произвольная точка М преобразуется в М’, и при этом выполняется два равенства:

33 dvizheniya

Поворачивать можно не только точки, но и целые фигуры. Например, ниже продемонстрирован поворот треугольника:

34 dvizheniya

Докажем, что поворот действительно является движением, то есть при его применении расстояния не искажаются. Пусть точки M и N поворачиваются на угол α относительно точки О: 

35 dvizheniya

Тогда по определению поворота можно записать:

36 dvizheniya

ч. т. д.

Использование движения в задачах

Мы уже рассмотрели одну задачу на построение, в которой применялся параллельный перенос прямой. Однако чаще в задачах используется поворот, а также различные виды симметрии.

 

Задание. Точки А и В лежат по одну сторону от прямой m. Как, используя только циркуль и линейку, отметить на m такую точку C, что сумма длин отрезков АС и ВС будет минимально возможной?

37 dvizheniya

Решение. Отобразим А симметрично относительно прямой m и получим точку А’. После этого соединим А’ с В. Отрезок пересечет m в точке, которая как раз и будет искомой точкой С:

38 dvizheniya

Действительно, по свойству движения отрезки АС и А’С одинаковы, поэтому сумма длин АС и ВС будет совпадать с суммой А’С и ВС, то есть будет равна длине А’В. Если бы выбрали вместо С какую-нибудь другую точку К, не лежащую на А’В, то сумма длин А’K и ВК оказалась бы больше, чем длина А’В вследствие неравенства треугольника, записанного для ∆А’KB.

Задание. Петя и Ваня играют в игру. Они по очереди кладут одинаковые круглые фишки на прямоугольный стол. До тех пор, пока это возможно сделать. Если игрок не может сделать ход, то он проигрывает. Какова оптимальная стратегия в этой игре и кто, используя ее, выиграет игру?

Решение. Заметим, что прямоугольный стол обладает центральной симметрией относительно своего центра (центр прямоугольника можно определить как точку, в которой пересекаются его диагонали). Пусть первый игрок положит первую фишку ровно в центр стола:

39 dvizheniya

Далее на любой второго игрока первый игрок может положить свою фишку симметрично относительно центра стола (число в центре круга – номер хода):

40 dvizheniya

Получается, что на ход второго игрока первый всегда сможет ответить. То есть первый игрок никак не может проиграть, используя эту тактику. Так как игра когда-нибудь окончится (ведь свободная площадь на столе рано или поздно закончится), и она не может завершиться вничью, то именно первый игрок и выиграет.


Задание. Для произвольного ∆АВС отмечены точки А1, В1 и С1 так, что ∆А1ВС, ∆АВ1С и ∆АВС1 являются равносторонними, причем никакие из этих четырех треугольников не имеют общей площади (в таких случаях говорят, что треугольники построены внешним образом). Докажите, что отрезки АА1, ВВ1 и СС1 имеют одинаковую длину.

41 dvizheniya

Решение. Напомним, что в равносторонних треугольниках все углы составляют по 60°. Выберем любую из вершин ∆АВС (например, С) и повернем отрезок АА1 на 60° против часовой стрелки. Тогда точка А1 отобразится в В, а точка А – в точку В1.

42 dvizheniya

В итоге отрезок АА1 отобразился в отрезок ВВ1. Это значит, что они одинаковы. Аналогичным образом, осуществляя поворот вокруг вершины А, можно показать, что отрезок ВВ1 переходит в отрезок СС1, и потому они также одинаковы. Таким образом, все три отрезка имеют одну и ту же длину.

 

Задание. В ∆АВС проведена медиана СМ. На стороне АС внешним образом построен квадрат АСDE, а на стороне ВС – квадрат ВСKF (также внешним образом). Докажите, что СМ вдвое короче KD, и СМ перпендикулярен KD.

43 dvizheniya

Решение. Повернем ∆АВС на 90° против часовой стрелки вокруг точки С вместе с медианой СМ. Тогда точка А перейдет в точку D, а М и B отобразятся в некоторые точки M’ и B’ соответственно:

44 dvizheniya

Заметим, что ∠ВСК – прямой, так как это угол квадрата. ∠ВСВ’ также прямой, ведь поворот мы осуществили как раз на 90°. Тогда ∠В’СКокажется развернутым:

45 dvizheniya

Это значит, что точки В’, С и К лежат на одной прямой. Отрезки ВС и СК одинаковы как стороны квадрата, а отрезок В’С имеет ту же длину, что и ВС (так как он получен поворотом ВС, а при повороте расстояния не искажаются). Тогда можно записать, что

46 dvizheniya

то есть отрезки СК и В’C также одинаковы. Это означает, что С – середина В’К.

М – это середина АВ (по определению медианы), поэтому и при повороте М’ останется серединой В’D. Получается, что отрезок СМ’ соединяет середины сторон В’К и В’D в ∆В’KD, то есть отрезок СМ’ является средней линией. Отсюда сразу вытекает два факта:

1) М’C вдвое короче КD;

2) М’C параллелен KD.

Ясно, что отрезки МС и М’C одинаковы по определению движения, поэтому МС также будет в 2 раза короче KD:

МC = М’C = KD/2

Отрезки МС и М’C перпендикулярны, ведь поворот мы выполнили на 90°. Но тогда МС также будет перпендикулярен и КD, ведь KD и М’C параллельны, ч. т. д.

Сегодня мы познакомились с понятием отображения плоскости на себя и его частным случаем – движением. При движении сохраняются все расстояния между точками, все углы, формы фигур и все соотношения между геометрическими объектами. Это свойство движения позволяет находить краткие решения весьма сложных геометрических задач.


ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
Выберите правильное утверждение:
1Ни одно из утверждений не является правильным
2Движение и отображение плоскости на себя – это синонимы
3Всякое отображение плоскости на себя – это движение
4Всякое движение – это отображение плоскости на себя
Ответить
4
Вопрос: 2
Как называется отображение плоскости, при котором расстояния между точками остаются неизменными?
1Параллельный перенос
2Движение
3Осевая симметрия
4Поворот
Ответить
2
Вопрос: 3
Как изменится площадь ∆АВС при его параллельном переносе на вектор АВ?
1Не изменится
2Увеличится в 2 раза
3Уменьшится в 2 раза
4Увеличится в 4 раза
Ответить
1
Вопрос: 4
Что НЕ надо указывать при совершении поворота?
1Центр поворота
2Направление поворота
3Коэффициент поворота
4Угол поворота
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

Выберите правильное утверждение:
1) Ни одно из утверждений не является правильным 2) Движение и отображение плоскости на себя – это синонимы 3) Всякое отображение плоскости на себя – это движение 4) Всякое движение – это отображение плоскости на себя
2 вопрос:

Как называется отображение плоскости, при котором расстояния между точками остаются неизменными?
1) Параллельный перенос 2) Движение 3) Осевая симметрия 4) Поворот
3 вопрос:

Как изменится площадь ∆АВС при его параллельном переносе на вектор АВ?
1) Не изменится 2) Увеличится в 2 раза 3) Уменьшится в 2 раза 4) Увеличится в 4 раза
4 вопрос:

Что НЕ надо указывать при совершении поворота?
1) Центр поворота 2) Направление поворота 3) Коэффициент поворота 4) Угол поворота
Посмотреть ответы
Правильные ответы:
1 вопрос: Всякое движение – это отображение плоскости на себя
2 вопрос: Движение
3 вопрос: Не изменится
4 вопрос: Коэффициент поворота