Алгебра

Урок 10: Показатель рациональный

Степень с рациональным показателем

Практика показывает, что выражения с корнями получаются довольно громоздкими, особенно если они возводятся в степень. К счастью, есть способ более компактной их записи. Для этого используют дробные степени.
 

План урока:

Степень с рациональным показателем

Свойства дробных степеней и операции с ними

Сравнение степеней

 

Степень с рациональным показателем

Напомним, что в 7 классе мы впервые познакомились с понятием степени, причем тогда рассматривались случаи, когда показателем степени является натуральное число. В 8 классе понятие степени было расширено, теперь в него включались случаи, когда показатель являлся целым числом. Настоятельно рекомендуем перечитать соответствующие уроки. Сегодня же мы можем сделать ещё один шаг вперед и рассмотреть степени с рациональными показателями.

При расширении понятия степени важно обеспечить то, чтобы уже известные правила работы с целыми степенями работали и для дробных показателей. Одно из свойств степеней выглядит так:

(am)n = amn

Подставим в эту формулу следующие значения переменных:

а = 3

m = 1/6

n = 6

Мы специально выбрали эти числа такими, чтобы произведение mn равнялось единице:

mn = (1/6)•6 = 1

Подставляем эти значения:

(31/6)6 = 31/66 = 31 = 3

Получили, что

(31/6)6 = 3

Однако по определению корня n-ой степени число, дающее при возведении в шестую степень тройку, является корнем шестой степени из трех. То есть можно записать:

1gfhdh

С помощью подобных преобразований нам удалось указать, чему равно число, возведенное в дробную степень. Аналогично можно показать, что для любого а > 0 справедлива формула:

2gdfh

Действительно, если возвести левую часть в n-ую степень, то получим:

1/n)n = a1/nn = a

Значит, по определению корня n-ой степени

3gdfg

4gfhj

Ограничение а > 0 необходимо для того, чтобы не рассматривать случаи, когда подкоренное выражение является отрицательным.

Продолжим наши рассуждения. Чему будет равна степень аm/n? Ясно, что дробь m/n можно представить в виде:

m/n = (1/n)•m

C учетом этого выполним преобразование:

5hgfhf

В результате несложных преобразований нам удалось получить формулу, позволяющую возводить число в степень, у которой рациональный показатель!

6hfgj

Приведем несколько примеров вычисления дробных степеней:

7hfgh

Часто при вычислениях удобнее сначала извлечь корень из числа, а потом полученный результат возвести в степень:

8hgfgh

Напомним, что одну и ту же дробь можно представить разными способами, например:

1/2 = 2/4 = 3/6 = 4/8 = 5/10 = 0,5

Возникает вопрос – изменится ли значение дробной степени, если мы приведем дробь к новому знаменателю? Очевидно, что нет, но всё же убедимся в этом на примере. Сначала возведем в степень 1/2 число 25:

9hgfh

Теперь заменим дробь 1/2 на идентичную ей дробь 2/4:

10hdgh

Результат не изменился. В общем случае есть смысл максимально сократить дробь перед вычислением, чтобы избежать операций с большими числами. Особенно это касается десятичных дробей. Например, пусть необходимо вычислить значение выражения 810,25. По определению десятичной дроби можно записать, что 0,25 = 25/100. Тогда вычислить 810,25 можно так:

11gfdg

Согласитесь, возводить число 81 в 25-ую степень не очень легко! Поэтому поступим иначе. Сократим дробь 25/100:

0,25 = 25/100 = 25/(25•4) = 1/4

Теперь вычисления будет более простыми:

12fdgf

Вообще легко запомнить, что 0,25 = 1/4, а 0,5 = 1/2. Замена десятичных дробей обыкновенными дробями сильно упрощает вычисления. Приведем примеры:

13hjui

 

Свойства дробных степеней и операции с ними

Когда мы изучали степени с целыми показателями, мы выяснили, что правила работы с ними ничем не отличаются от правил работы со степенями с натуральным показателем. Оказывается, эти же правила работают и для степеней с рациональным показателем. Сформулируем основные свойства дробных степеней.

14ghj

Например, справедливы следующие действия:

50,5•52,5 = 50,5 + 2,5 = 53 = 125

195/3•191/3 = 195/3 + 1/3 = 192 = 361

29,36–0,37•29,361,37 = 29,36–0,37 + 1,37 = 29,361 = 29,36

15jli

Вот несколько примеров подобных вычислений:

174,5:173,5 = 174,5–3,5 = 171 = 1

49,36:46,36 = 49,36–6,36 = 43 = 64

2012:2014 = 2012–14 = 20–2

16nhf

Проиллюстрируем это правило примерами:

(60,25)8 = 60,25•8 = 62 = 36

(93/2)2 = 9(3/2)•2 = 93 = 729

(254)0,125 = 254•0,125 = 250,5 = 5

17hgj

Покажем, как можно применять данное правило:

41/6•161/6 = (4•64)1/6 = 641/6 = 2

0,51,5•501,5 = (0,5•50)1,5 = 251,5 = 251+0,5 = 251•250,5 = 25•5 = 125

4,90,5•100,5 = (4,9•10)0,5 = 490,5 =7

18hfgh

Это правило можно применять следующим образом:

3600,5:100,5 = (360:10)0,5 = 360,5 = 6

5003:503 = (500:50)3 = 103 = 1000

6,251/4:0,011/4 = (6,25:0,01)1/4 = 6251/4 = 5

 

Заметим, что степени очень удобны тем, что с их помощью легко упростить работу с корнями, ведь если

19jghj

то верное и обратное:

20gkj

То есть любое выражение с корнями в виде степени с рациональным показателем.

Пример. Вычислите значение выражения

21khjk

Решение. Корней много, поэтому для удобства заменим их степенями

22gfg

Получили тоже самое выражение, но в более компактном виде. Посчитаем его значение:

(91/4)1/5•39/10 = (90,25)0,2•30,9 = 90,25•0,2•30,9 = 90,05•30,9 = (32)0,05•30,9 =

=32•0,05•30,9 = 30,1•30,9 = 30,1•0,9 = 31 = 3

Ответ: 3.

 

Пример. Упростите выражение

(81n+1– 65•81n)0,25

Решение. Степень 81n+1можно представить как произведение:

81n+1 = 81n•811 = 81•81n

С учетом этого можно записать:

(81n+1– 65•81n)0,25 = (81•81n– 65•81n)0,25 = (81n(81 – 65))0,25 =

= (81n•16)0,25 = 810,25n •160,25 = 810,25n •161/4 = 2•810,25n

Ответ: 2•810,25n.

 

Сравнение степеней

Напомним, что из двух корней n-ой степени больше тот, у которого больше подкоренное выражение:

23jhgk

Отсюда следует вывод, что если a<b, то

а1/n<b1/n

теперь возведем каждую часть этого неравенства в степень m. Тогда получим неравенство:

аm/n<bm/n

Получили, что из двух степеней с одинаковыми показателями меньше та, у которой меньше основание (правила сравнения будем нумеровать, чтобы на них удобнее было ссылаться):

24hhgk

В частности, справедливы следующие неравенства:

233,75< 243,75

634/3< 644/3

0,0080,002< 0,0080,002

Здесь мы рассматривали случаи, когда показатель степени является положительным числом. А что делать, если он отрицательный? Тогда степень следует «перевернуть», воспользовавшись уже известной вам формулой:

an = 1/an = (1/а)n

 

Пример. Сравните выражения с рациональным показателем степени:

20–3,14 и 50–3,14

Решение. Избавимся от знака минус в показателе:

20–3,14 = (1/20)3,14 = 0,053,14

50–3,14 = (1/50)3,14 = 0,023,14

Получили две степени с одинаковым и, что принципиально важно, положительным показателем. Из них больше та, у которой больше основание. То есть из неравенства 0,02 < 0,05 следует, что

0,023,14< 0,053,14

Это означает, что

50–3,14< 20–3,14

Ответ: 50–3,14< 20–3,14.

Особенным является случай, когда показатель степени равен нулю. Напомним, что любое число в нулевой степени (кроме самого нуля) равно единице, а выражение 00 не имеет смысл. Это значит, что числа в нулевой степени равны друг другу, даже если у них разные основания:

250 = 260 = 1

9,360 = 9,370 = 1

18,35460 = 12,36470 = 1

Несколько сложнее сравнивать числа, у которых одинаковые основания, но различные показатели. Здесь возможны три случая – основание либо равно единице, либо больше неё, либо меньше неё.

25jkgjk

На основании этого правила можно записать, что:

53,14< 53,15

45–0,563< 450,001

1,235–5,623< 1,235–4,958

Единица в любой степени равна самой себе. Поэтому, если у двух чисел в основании записана именно она, то они должны быть равны друг другу:

1–7,56 = 1–0,15 = 10,236 = 1 521,36 = 1

Осталось рассмотреть случай, когда основание меньше единицы (но всё равно положительное). В таком случае ситуация становится противоположной – чем больше степень, тем меньше число. Проиллюстрируем это на примере. Пусть надо сравнить числа 0,57,6 и 0,58,9. Заменим дробь 0,5 так, чтобы вместо нее получилась степень с основанием, большим единицы:

0,5 = 1/2 = 1/(21) = 2–1

Итак, 0,5 = 2–1. Тогда можно записать, что:

0,57,6 = (2–1)7,6 = 2–7,6

0,58,9 = (2–1)8,9 = 2–8,9

Такие числа мы уже умеем сравнивать. Так как

– 8,9 <– 7,6

то и

2–8,9< 2–7,6

Следовательно, 0,57,6> 0,58,9.

26jhj

Например, справедливы неравенства:

0,997> 0,997,24

0,5715,36> 0,5716,47

0,490,04> 0,490,05

Рассмотрим чуть более сложное задание на сравнение степеней, где надо использовать одновременно несколько правил.

Пример. Докажите, что

0,90,9 + 0,80,8 + 0,70,7< 281/3

Решение. Напрямую вычислить значение выражений в правой и левой части затруднительно. Однако мы можем усиливать неравенство, чтобы получить более простые выражения.

Усилить неравенство – это значит увеличить его меньшую или уменьшить большую часть. Например, неравенство 10 < 20 усилится, если вместо 10 написать большее число (11 < 20), или вместо 20 написать меньшее число (10 < 19). Очевидно, что если усиленное неравенство верное, то и изначальное (ослабленное) также справедливо.

Очевидно, что можно легко посчитать значение выражения 271/3:

27hgfh

Также ясно, что 271/3< 281/3 (правило 1). Усилим исходное неравенство:

0,90,9 + 0,80,8 + 0,70,7< 271/3 (1)

Действительно, если (1) справедливо, то мы можем записать двойное неравенство

0,90,9 + 0,80,8 + 0,70,7< 271/3< 281/3

Опустив здесь среднюю часть, получим исходное неравенство. Так как 271/3 = 3, мы можем переписать (1) так:

0,90,9 + 0,80,8 + 0,70,7<3 (2)

Далее будем работать с левой частью. Очевидно, что 0,80,8< 0,90,8 (снова используем правило 1). С другой стороны, 0,90,8< 0,90,7 (правило 3). Значит, можно записать двойное неравенство:

0,80,8< 0,90,8<0,90,7

или просто 0,80,8<0,90,7. Абсолютно аналогично можно записать, что

0,70,8< 0,90,7<0,90,7

Или 0,70,8<0,90,7. Наконец, в силу правила (3), 0,90,9<0,90,7. Итак, имеем три неравенства:

0,90,9<0,90,7

0,80,8<0,90,7

0,70,8<0,90,7

Их левые части стоят в (2). Следовательно, можно усилить (2):

0,90,7 + 0,90,7 + 0,90,7<3

3•0,90,7< 3

Поделим обе части на 3:

0,90,7< 1

Заменим единицу равным ему выражением 10,7:

0,90,7<10,7 (4)

Из правила 1 следует, что (4) справедливо. Но мы получили его, усиливая исходное неравенство. Из справедливости более сильного неравенства следует и справедливость более слабого. Следовательно, из справедливости (4) вытекает верность исходного неравенства, которое и надо было доказать.

 

ВОПРОСЫ И ЗАДАНИЯ

Вопрос: 1
Вычислите 253/2
1625
25
325
4125
Ответить
4
Вопрос: 2
Чему равно произведение 91,6•90,4?
19
281
3-9
427
Ответить
2
Вопрос: 3
Укажите верное неравенство
127,33,456< 27,33,457
227,33,456> 27,33,457
30,70,7< 0,70,8
41345/19< 11254/21
Ответить
1
Вопрос: 4
Какое из этих неравенств справедливо?
15,3257,28> 5,3267,28
25,3250,345> 5,3260,345
35,3257,28< 5,3267,28
45,325–7,28< 5,326–7,28
Ответить
3
Допущено ошибок:
Оценка:
Подробнее
Ваши ответы:
1 вопрос:

Вычислите 253/2
1) 625 2) 5 3) 25 4) 125
2 вопрос:

Чему равно произведение 91,6•90,4?
1) 9 2) 81 3) -9 4) 27
3 вопрос:

Укажите верное неравенство
1) 27,33,456< 27,33,457 2) 27,33,456> 27,33,457 3) 0,70,7< 0,70,8 4) 1345/19< 11254/21
4 вопрос:

Какое из этих неравенств справедливо?
1) 5,3257,28> 5,3267,28 2) 5,3250,345> 5,3260,345 3) 5,3257,28< 5,3267,28 4) 5,325–7,28< 5,326–7,28
Посмотреть ответы
Правильные ответы:
1 вопрос: 125
2 вопрос: 81
3 вопрос: 27,33,456< 27,33,457
4 вопрос: 5,3257,28< 5,3267,28